atlas-browser-mcp
Enables AI agents to navigate the web visually using screenshot-based interaction and Set-of-Mark labeling for interactive elements. It supports humanized browsing behaviors, anti-detection measures, and complex tasks like multi-click CAPTCHA solving.
README
🌐 atlas-browser-mcp
Visual web browsing for AI agents via Model Context Protocol (MCP).
✨ Features
- 📸 Visual-First: Navigate the web through screenshots, not DOM parsing
- 🏷️ Set-of-Mark: Interactive elements labeled with clickable
[0],[1],[2]... markers - 🎭 Humanized: Bezier curve mouse movements, natural typing rhythms
- 🧩 CAPTCHA-Ready: Multi-click support for image selection challenges
- 🛡️ Anti-Detection: Built-in measures to avoid bot detection
🚀 Quick Start
Installation
pip install atlas-browser-mcp
playwright install chromium
Use with Claude Desktop
Add to your Claude Desktop config (claude_desktop_config.json):
{
"mcpServers": {
"browser": {
"command": "atlas-browser-mcp"
}
}
}
Then ask Claude:
"Navigate to https://news.ycombinator.com and tell me the top 3 stories"
🛠️ Available Tools
| Tool | Description |
|---|---|
navigate |
Go to URL, returns labeled screenshot |
screenshot |
Capture current page with labels |
click |
Click element by label ID [N] |
multi_click |
Click multiple elements (for CAPTCHA) |
type |
Type text, optionally press Enter |
scroll |
Scroll page up or down |
📖 Usage Examples
Basic Navigation
User: Go to google.com
AI: [calls navigate(url="https://google.com")]
AI: I see the Google homepage. The search box is labeled [3].
User: Search for "MCP protocol"
AI: [calls click(label_id=3)]
AI: [calls type(text="MCP protocol", submit=true)]
AI: Here are the search results...
CAPTCHA Handling
User: Select all images with traffic lights
AI: [Looking at the CAPTCHA grid]
AI: I can see traffic lights in images [2], [5], and [8].
AI: [calls multi_click(label_ids=[2, 5, 8])]
🔧 Configuration
Headless Mode
For servers without display:
from atlas_browser_mcp.browser import VisualBrowser
browser = VisualBrowser(
headless=True, # No visible browser window
humanize=False # Faster, less human-like
)
Custom Viewport
browser = VisualBrowser()
browser.VIEWPORT = {"width": 1920, "height": 1080}
🏗️ How It Works
- Navigate: Browser loads the page
- Inject SoM: JavaScript labels all interactive elements
- Screenshot: Capture the labeled page
- AI Sees: The screenshot shows
[0],[1],[2]... on buttons, links, inputs - AI Acts: "Click
[5]" → Browser clicks the element at that position - Repeat: New screenshot with updated labels
┌─────────────────────────────────────┐
│ [0] Logo [1] Search [2] Menu │
│ │
│ [3] Article Title │
│ [4] Read More │
│ │
│ [5] Subscribe [6] Share │
└─────────────────────────────────────┘
🤝 Integration
With Cline (VS Code)
{
"mcpServers": {
"browser": {
"command": "atlas-browser-mcp"
}
}
}
Programmatic Use
from atlas_browser_mcp.browser import VisualBrowser
browser = VisualBrowser()
# Navigate
result = browser.execute("navigate", url="https://example.com")
print(f"Page title: {result.data['title']}")
print(f"Found {result.data['element_count']} interactive elements")
# Click element [0]
result = browser.execute("click", label_id=0)
# Type in focused field
result = browser.execute("type", text="Hello world", submit=True)
# Cleanup
browser.execute("close")
📋 Requirements
- Python 3.10+
- Playwright with Chromium
🐛 Troubleshooting
"Playwright not installed"
pip install playwright
playwright install chromium
"Browser closed unexpectedly"
Try running with headless=False to see what's happening:
browser = VisualBrowser(headless=False)
Elements not being detected
Some dynamic pages need more wait time. The browser waits 1.5s after navigation, but complex SPAs may need longer.
📄 License
MIT License - see LICENSE
🙏 Credits
Built for Atlas, an autonomous AI agent.
Inspired by:
-
anthropic/mcp - Model Context Protocol
-
AskUI - Visual testing approach
-
Set-of-Mark prompting - Visual grounding technique
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。