AudioGen MCP Server
Enables users to generate sound effects from text descriptions using Meta's AudioGen model. Specifically designed for Apple Silicon Macs, it supports single and batch audio generation directly from natural language prompts.
README
AudioGen MCP Server
An MCP server that generates sound effects from text descriptions using Meta's AudioGen model. Designed for Apple Silicon Macs.
Prerequisites
- macOS with Apple Silicon (M1/M2/M3/M4)
- Python 3.9-3.11 (3.12+ not yet supported by audiocraft)
- ffmpeg:
brew install ffmpeg - ~4GB disk space for model weights
- ~8GB RAM recommended
Installation
Due to audiocraft's complex dependencies (xformers doesn't build on Apple Silicon), installation requires a specific order:
# Create virtual environment with Python 3.11
uv venv ~/.audiogen-env --python 3.11
source ~/.audiogen-env/bin/activate
# Install audiocraft without its problematic dependencies
uv pip install audiocraft --no-deps
# Install the actual dependencies (skipping xformers)
uv pip install torch torchaudio transformers huggingface_hub encodec einops \
flashy num2words sentencepiece librosa av julius spacy torchmetrics \
hydra-core hydra-colorlog demucs lameenc
# Install audiogen-mcp
uv pip install audiogen-mcp
The first run will download the AudioGen model (~2GB).
Configure Claude Code
claude mcp add audiogen ~/.audiogen-env/bin/python -- -m audiogen_mcp.server
Or add to ~/.config/claude/claude_desktop_config.json:
{
"mcpServers": {
"audiogen": {
"command": "/Users/YOUR_USERNAME/.audiogen-env/bin/python",
"args": ["-m", "audiogen_mcp.server"]
}
}
}
Available Tools
| Tool | Description |
|---|---|
generate_sound_effect |
Start a background generation job, returns job_id |
check_generation_status |
Poll job status by job_id until completed |
list_generation_jobs |
List all jobs and their current status |
list_generated_sounds |
List previously generated audio files |
get_model_status |
Check if model is loaded and device info |
How It Works
Generation runs in the background to avoid timeouts:
- Call
generate_sound_effectwith your prompt → returnsjob_id - Poll
check_generation_statuswith thejob_idevery 10-15 seconds - When status is
completed, the result includesfile_path
Example Prompts
Once configured, ask Claude Code to generate sounds:
- "Generate an explosion sound effect"
- "Create a dark ambient tension drone, 10 seconds"
- "Make a retro 8-bit power-up sound, 2 seconds long"
- "Generate footsteps on gravel, 5 seconds"
Prompt Tips
For best results, be specific:
# Good
"glass breaking, single wine glass falling on tile floor"
"8-bit arcade explosion, retro game style"
"dark ambient tension drone, synth pad, ominous low frequency rumble"
# Less good
"glass sound"
"explosion"
"ambient"
Include style, mood, and context for better results.
Performance
- ~18 seconds to generate 1 second of audio on Apple Silicon
- 5 seconds of audio ≈ 90 seconds generation time
- 10 seconds of audio ≈ 180 seconds generation time
- First generation takes longer (model loading ~5s)
- Uses Metal Performance Shaders (MPS) for GPU acceleration
Output
Generated files save to ~/audiogen_outputs/ by default as WAV or OGG files.
Troubleshooting
Installation fails with xformers error
This is expected on Apple Silicon. The server mocks xformers at runtime since it's only needed for CUDA. If audiocraft installation fails, try:
uv pip install torch torchaudio
uv pip install audiocraft --no-build-isolation
Model download fails
Ensure stable internet and sufficient disk space. The model downloads from HuggingFace Hub.
Slow generation
Check device with get_model_status tool. CPU fallback is 10-20x slower than MPS.
MPS not available
Requires macOS 12.3+ and PyTorch 2.0+.
License
MIT License - see LICENSE file.
Acknowledgments
- Meta AudioCraft - The underlying AI model
- MCP - Model Context Protocol specification
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。