AudioGen MCP Server

AudioGen MCP Server

Enables users to generate sound effects from text descriptions using Meta's AudioGen model. Specifically designed for Apple Silicon Macs, it supports single and batch audio generation directly from natural language prompts.

Category
访问服务器

README

AudioGen MCP Server

PyPI version License: MIT

An MCP server that generates sound effects from text descriptions using Meta's AudioGen model. Designed for Apple Silicon Macs.

Prerequisites

  • macOS with Apple Silicon (M1/M2/M3/M4)
  • Python 3.9-3.11 (3.12+ not yet supported by audiocraft)
  • ffmpeg: brew install ffmpeg
  • ~4GB disk space for model weights
  • ~8GB RAM recommended

Installation

Due to audiocraft's complex dependencies (xformers doesn't build on Apple Silicon), installation requires a specific order:

# Create virtual environment with Python 3.11
uv venv ~/.audiogen-env --python 3.11
source ~/.audiogen-env/bin/activate

# Install audiocraft without its problematic dependencies
uv pip install audiocraft --no-deps

# Install the actual dependencies (skipping xformers)
uv pip install torch torchaudio transformers huggingface_hub encodec einops \
    flashy num2words sentencepiece librosa av julius spacy torchmetrics \
    hydra-core hydra-colorlog demucs lameenc

# Install audiogen-mcp
uv pip install audiogen-mcp

The first run will download the AudioGen model (~2GB).

Configure Claude Code

claude mcp add audiogen ~/.audiogen-env/bin/python -- -m audiogen_mcp.server

Or add to ~/.config/claude/claude_desktop_config.json:

{
  "mcpServers": {
    "audiogen": {
      "command": "/Users/YOUR_USERNAME/.audiogen-env/bin/python",
      "args": ["-m", "audiogen_mcp.server"]
    }
  }
}

Available Tools

Tool Description
generate_sound_effect Start a background generation job, returns job_id
check_generation_status Poll job status by job_id until completed
list_generation_jobs List all jobs and their current status
list_generated_sounds List previously generated audio files
get_model_status Check if model is loaded and device info

How It Works

Generation runs in the background to avoid timeouts:

  1. Call generate_sound_effect with your prompt → returns job_id
  2. Poll check_generation_status with the job_id every 10-15 seconds
  3. When status is completed, the result includes file_path

Example Prompts

Once configured, ask Claude Code to generate sounds:

  • "Generate an explosion sound effect"
  • "Create a dark ambient tension drone, 10 seconds"
  • "Make a retro 8-bit power-up sound, 2 seconds long"
  • "Generate footsteps on gravel, 5 seconds"

Prompt Tips

For best results, be specific:

# Good
"glass breaking, single wine glass falling on tile floor"
"8-bit arcade explosion, retro game style"
"dark ambient tension drone, synth pad, ominous low frequency rumble"

# Less good
"glass sound"
"explosion"
"ambient"

Include style, mood, and context for better results.

Performance

  • ~18 seconds to generate 1 second of audio on Apple Silicon
  • 5 seconds of audio ≈ 90 seconds generation time
  • 10 seconds of audio ≈ 180 seconds generation time
  • First generation takes longer (model loading ~5s)
  • Uses Metal Performance Shaders (MPS) for GPU acceleration

Output

Generated files save to ~/audiogen_outputs/ by default as WAV or OGG files.

Troubleshooting

Installation fails with xformers error

This is expected on Apple Silicon. The server mocks xformers at runtime since it's only needed for CUDA. If audiocraft installation fails, try:

uv pip install torch torchaudio
uv pip install audiocraft --no-build-isolation

Model download fails

Ensure stable internet and sufficient disk space. The model downloads from HuggingFace Hub.

Slow generation

Check device with get_model_status tool. CPU fallback is 10-20x slower than MPS.

MPS not available

Requires macOS 12.3+ and PyTorch 2.0+.

License

MIT License - see LICENSE file.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选