Aurora-MCP

Aurora-MCP

Enables querying relationships between plant species, small molecules, and mitochondrial Complex I inhibitors by bridging natural-product, biodiversity, and PubMed datasets. Allows LLMs to perform structured searches and reasoning over biological data to identify potential plant-derived mitochondrial inhibitors.

Category
访问服务器

README


title: Aurora-MCP emoji: 🌿 colorFrom: green colorTo: indigo sdk: docker pinned: false

🌿 Aurora-MCP

Model Context Protocol (MCP) server providing access to datasets of natural and synthetic small molecules, with a focus on identifying potential mitochondrial Complex I inhibitors that may occur in plant species.


🔍 Overview

Aurora-MCP is a Model Context Protocol (MCP) server and data integration layer that connects natural-product, biodiversity, and mitochondrial-inhibitor datasets. It enables LLMs and users to query relationships between plant species, small molecules, and mitochondrial Complex I inhibition—bridging COCONUT, Laji.fi, GBIF, and AI-derived PubMed data through structured joins and metadata schemas.

Aurora-MCP is a lightweight MCP server + Hugging Face Space designed to bridge two complementary knowledge sources:

  1. 🌿 Aurora — natural-product and plant biodiversity data, mapping compounds to genera and species found in Nordic ecosystems.
  2. 🧬 Aurora-Mito-ETL — curated PubMed-derived corpus of small-molecule inhibitors of mitochondrial Complex I (NADH dehydrogenase).

Together they form a conversational dataset where ChatGPT (or any MCP-compatible LLM) can reason over structured biological data, ask questions, and perform targeted searches on small compounds, plants, and mechanistic links between them.


🧠 Concept

Goal: allow scientific dialogue with an LLM grounded in domain data, for example:

“Show me plant-derived compounds that inhibit mitochondrial Complex I.”
“Find PubMed evidence for arctigenin as a Complex I inhibitor.”
“List Nordic plants whose metabolites overlap with known ETC inhibitors.”

Aurora-MCP turns your static text/TSV data into an interactive semantic backend, exposing programmatic tools for searching, linking, and reasoning. a FastAPI‑based MCP endpoint (/mcp) that ChatGPT (or any MCP‑aware client) can connect to. It also provides /healthz for status checks and simple debug HTTP routes for local testing.


🚀 Quick start (local)

# 1. Create a clean environment
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

# 2. Run the MCP HTTP server
uvicorn mcp_server.server:app --host 0.0.0.0 --port 7860

# 3. Check health
curl -s http://127.0.0.1:7860/healthz | jq

# 4. Optional: test the debug routes
curl -s 'http://127.0.0.1:7860/debug/list_files?path=data' | jq

You should see something like:

{
  "ok": true,
  "mcp": "mounted at /mcp",
  "tools": ["list_files","read_text"]
}

🧠 Using with ChatGPT (MCP)

  1. Deploy this repository to a Hugging Face Space (Docker SDK).
  2. Wait until the Space is running and /healthz returns 200 OK:
    https://huggingface.co/spaces/<you>/<space>/healthz
  3. In ChatGPT → Settings → Connectors / MCP → Add Server
    • Server URL: https://huggingface.co/spaces/<you>/<space>/mcp
  4. Open a new chat and try for example:
    • list_files(path="data")
    • read_text(path="README.md")
    • (Aurora domain tools can be added similarly.)

🐳 Docker (for Hugging Face Spaces)

FROM python:3.12-slim

WORKDIR /app
ENV PYTHONDONTWRITEBYTECODE=1 PYTHONUNBUFFERED=1 PIP_NO_CACHE_DIR=1

RUN apt-get update && apt-get install -y --no-install-recommends     build-essential curl ca-certificates  && rm -rf /var/lib/apt/lists/*

COPY requirements.txt .
RUN pip install --upgrade pip && pip install -r requirements.txt

COPY . .
EXPOSE 7860
ENV PORT=7860

HEALTHCHECK --interval=30s --timeout=5s --start-period=10s --retries=5   CMD curl -fsS http://127.0.0.1:${PORT}/healthz || exit 1

CMD ["uvicorn","mcp_server.server:app","--host","0.0.0.0","--port","7860"]

🧩 Architecture overview

Component Description
FastAPI app Hosts the /mcp streaming endpoint and /healthz check
FastMCP MCP server layer that exposes Python functions as MCP tools
Tools Simple functions (list_files, read_text, etc.) that can be called by MCP clients
Aurora domain (Future) plant‑compound and inhibitor analytics from your Aurora ETL data

📂 Project layout

aurora-mcp/
├── mcp_server/
│   ├── server.py          # FastAPI + FastMCP entrypoint
│   ├── tools/
│   │   └── files.py       # Example tools (list_files, read_text)
│   └── __init__.py
├── data/                  # Local data (ignored by git)
├── requirements.txt
├── Dockerfile
├── huggingface.yaml
└── README.md

✅ Health & debug routes

Endpoint Purpose
/healthz lightweight JSON health check
/debug/list_files list directory contents (no MCP)
/debug/read_text read a file as plain text

⚙️ Requirements

fastapi>=0.119
uvicorn>=0.37
mcp>=0.17.0
pydantic>=2.11.9
pandas>=2.3.3

Install with:

pip install -r requirements.txt

🧱 Hugging Face Space metadata

# huggingface.yaml
title: Aurora-MCP
sdk: docker
emoji: 🌿
colorFrom: green
colorTo: indigo
pinned: false

🔍 Troubleshooting

Symptom Cause / Fix
GET /mcp → 307/500 Normal; only MCP clients can connect
Task group is not initialized Fixed by FastMCP startup hook
ModuleNotFoundError: mcp.server.fastapi Install correct SDK: pip install mcp fastapi uvicorn
healthz returns nothing Curl 127.0.0.1 not 0.0.0.0

Author: Daniel Nicorici · University of Helsinki
License: GNU GPL v3
URL: https://github.com/ndaniel/aurora-mcp

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选