Automatisch MCP Server
Enables AI assistants to interact with Automatisch workflow automation platform, allowing them to create, manage, and monitor workflows, connections, and executions through natural language commands.
README
Automatisch MCP Server
A Model Context Protocol (MCP) server that provides AI assistants with access to Automatisch workflow automation capabilities.
Overview
This MCP server enables AI assistants to interact with Automatisch, an open-source Zapier alternative for workflow automation. It provides tools to manage workflows, connections, executions, and app integrations.
Features
Tools Available
- Workflow Management: Create, read, update, delete, and test workflows
- Connection Management: Manage app connections and credentials
- Execution Monitoring: View workflow execution history and status
- App Discovery: Browse available apps and their capabilities
- Testing: Test workflows with sample data
Resources Provided
- Workflows overview with status summary
- App connections listing
- Available apps catalog
- Recent executions log
Prerequisites
- Node.js 18+
- Running Automatisch instance
- Automatisch API access (API key recommended)
Installation
-
Clone or download the MCP server code
-
Install dependencies:
npm install -
Build the project:
npm run build
Configuration
Set environment variables:
# Automatisch instance URL (default: http://localhost:3001)
export AUTOMATISCH_BASE_URL="http://your-automatisch-instance:3001"
# API key for authentication (optional but recommended)
export AUTOMATISCH_API_KEY="your-api-key"
Usage
Claude Desktop Integration
Add to your Claude Desktop configuration file:
{
"mcpServers": {
"automatisch": {
"command": "npx",
"args": ["-y", "automatisch-mcp-server"],
"env": {
"AUTOMATISCH_BASE_URL": "http://localhost:3001",
"AUTOMATISCH_API_KEY": "your-api-key"
}
}
}
}
Standalone Usage
npm start
Available Tools
Workflow Management
list_workflows- List all workflows with optional filteringget_workflow- Get detailed workflow informationcreate_workflow- Create new workflowupdate_workflow- Update existing workflowdelete_workflow- Delete workflowtest_workflow- Test workflow with sample data
Connection Management
list_connections- List app connectionscreate_connection- Create new app connection
Monitoring & Discovery
list_executions- View workflow execution historyget_available_apps- Browse available apps and integrations
Example Usage with AI Assistant
# List all active workflows
"Show me all active workflows"
# Create a new workflow
"Create a workflow named 'Email Notifications' that sends emails when new GitHub issues are created"
# Check recent executions
"Show me the recent workflow executions and their status"
# Get workflow details
"Tell me about the workflow with ID 'abc123'"
# List available apps
"What apps are available for integration?"
API Endpoints
The server interfaces with these Automatisch API endpoints:
GET /api/flows- List workflowsPOST /api/flows- Create workflowPATCH /api/flows/:id- Update workflowDELETE /api/flows/:id- Delete workflowGET /api/connections- List connectionsPOST /api/connections- Create connectionGET /api/executions- List executionsGET /api/apps- List available apps
Development
Running in Development Mode
npm run dev
Building
npm run build
Cleaning Build Files
npm run clean
Error Handling
The server includes comprehensive error handling:
- Network connectivity issues with Automatisch
- Invalid API responses
- Missing required parameters
- Authentication failures
Errors are logged and returned as structured responses to the AI assistant.
Security Considerations
- Use API keys for authentication when available
- Ensure Automatisch instance is properly secured
- Limit network access to trusted sources
- Regularly update dependencies
Troubleshooting
Common Issues
- Connection Failed: Verify
AUTOMATISCH_BASE_URLis correct and accessible - Authentication Error: Check
AUTOMATISCH_API_KEYis valid - Tool Not Found: Ensure MCP server is properly registered with Claude Desktop
- API Errors: Check Automatisch logs for detailed error information
Debug Mode
Enable debug logging by setting:
export NODE_ENV=development
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
This project is licensed under the MIT License.
Related Projects
- Automatisch - Open source workflow automation
- Model Context Protocol - Protocol specification
- MCP SDK - TypeScript SDK
Support
For issues related to:
- Issues specific to MCP Server integration or this repository: Open an issue here
- Automatisch: Visit Automatisch GitHub Issues
- MCP Protocol: Check MCP Documentation
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
