
AVA MCP Server
A custom MCP server that provides AI applications with access to an Artificial Virtual Assistant (AVA) toolset, enabling Gmail integration and task management through natural language.
Tools
write_email_draft
Create a draft email using the Gmail API. Args: recipient_email (str): The email address of the recipient. subject (str): The subject line of the email. body (str): The main content/body of the email. Returns: dict or None: A dictionary containing the draft information including 'id' and 'message' if successful, None if an error occurs. Raises: HttpError: If there is an error communicating with the Gmail API. Note: This function requires: - Gmail API credentials to be properly configured - USER_EMAIL environment variable to be set with the sender's email address - Appropriate Gmail API permissions for creating drafts
README
Model Context Protocol (MCP)
All credits to : https://github.com/ShawhinT/YouTube-Blog/
Fourth example in AI agents series. Here, I build a customer MCP server to give any AI app access to a toolset for an Artificial Virtual Assistant (AVA).
Links
How to run this example
- Clone this repo
- Install uv if you haven't already
# Mac/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
- Test the server in dev mode
uv run mcp dev mcp-server-example.py
- Add server config to AI app (e.g. Claude Desktop or Cursor).
{
"mcpServers": {
"AVA": {
"command": "/Users/shawhin/.local/bin/uv", # replace with global path to your uv installation
"args": [
"--directory",
"/Users/shawhin/Documents/_code/_stv/sandbox/ava-mcp/", # replace with global path to repo
"run",
"mcp-server-example.py"
]
}
}
}
Customizing AVA's Behavior
Update Personal Details and Preferences
- Locate the
prompts/ava.md
file in your project directory - Customize the file with:
- Communication preferences
- Specific instructions for handling tasks
- Any other relevant guidelines for AVA
Environment Setup (.env)
- Create a
.env
file in the root directory of the project with the following variables:
USER_EMAIL=your_email_address
# Google OAuth Credentials
GOOGLE_CREDENTIALS_PATH=.config/ava-agent/credentials.json
GOOGLE_TOKEN_PATH=.config/ava-agent/token.json
Required Environment Variables:
USER_EMAIL
: The Gmail address you want to use for this applicationGOOGLE_CREDENTIALS_PATH
: Path to your Google OAuth credentials fileGOOGLE_TOKEN_PATH
: Path where the Google OAuth token will be stored
Google OAuth Setup
1. Create Project Directory Structure
First, create the required directory structure:
mkdir -p .config/ava-agent
2. Set Up Google Cloud Project
- Go to the Google Cloud Console
- Create a new project or select an existing one
- Enable the Gmail API:
- In the navigation menu, go to "APIs & Services" > "Library"
- Search for "Gmail API"
- Click "Enable"
3. Create OAuth Credentials
-
In the Google Cloud Console:
- Go to "APIs & Services" > "Credentials"
- Click "Create Credentials" > "OAuth client ID"
- Choose "Desktop application" as the application type
- Give it a name (e.g., "AVA Gmail Client")
- Click "Create"
-
Download the credentials:
- After creation, click "Download JSON"
- Save the downloaded file as
credentials.json
in.config/ava-agent/
- The file should contain your client ID and client secret
4. Configure OAuth Consent Screen
- In the Google Cloud Console:
- Go to "APIs & Services" > "OAuth consent screen"
- Choose "External" user type
- Fill in the required information:
- App name
- User support email
- Developer contact information
- Add the Gmail API scope:
https://www.googleapis.com/auth/gmail.modify
- Add your email as a test user
- Complete the configuration
Signing into Google
Before the server can access you Gmail account you will need to authorize it. You can do this by running uv run oauth.py
which does the following.
- Check for the presence of
token.json
- If not found, it will initiate the Google OAuth authentication flow
- Guide you through the authentication process in your browser:
- You'll be asked to sign in to your Google account
- Grant the requested permissions
- The application will automatically save the token
- Generate and store the token automatically
Security Notes
File Protection
- Never commit your
.env
file ortoken.json
to version control - Keep your Google credentials secure
- Add the following to your
.gitignore
:.env .config/ava-agent/token.json .config/ava-agent/credentials.json
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。