AVA MCP Server

AVA MCP Server

A custom MCP server that provides AI applications with access to an Artificial Virtual Assistant (AVA) toolset, enabling Gmail integration and task management through natural language.

Category
访问服务器

Tools

write_email_draft

Create a draft email using the Gmail API. Args: recipient_email (str): The email address of the recipient. subject (str): The subject line of the email. body (str): The main content/body of the email. Returns: dict or None: A dictionary containing the draft information including 'id' and 'message' if successful, None if an error occurs. Raises: HttpError: If there is an error communicating with the Gmail API. Note: This function requires: - Gmail API credentials to be properly configured - USER_EMAIL environment variable to be set with the sender's email address - Appropriate Gmail API permissions for creating drafts

README

Model Context Protocol (MCP)

All credits to : https://github.com/ShawhinT/YouTube-Blog/

Fourth example in AI agents series. Here, I build a customer MCP server to give any AI app access to a toolset for an Artificial Virtual Assistant (AVA).

Links

How to run this example

  1. Clone this repo
  2. Install uv if you haven't already
# Mac/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh

# Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
  1. Test the server in dev mode
uv run mcp dev mcp-server-example.py
  1. Add server config to AI app (e.g. Claude Desktop or Cursor).
{
  "mcpServers": {
    "AVA": {
      "command": "/Users/shawhin/.local/bin/uv", # replace with global path to your uv installation
      "args": [
        "--directory",
        "/Users/shawhin/Documents/_code/_stv/sandbox/ava-mcp/", # replace with global path to repo
        "run",
        "mcp-server-example.py"
      ]
    }
  }
}

Customizing AVA's Behavior

Update Personal Details and Preferences

  1. Locate the prompts/ava.md file in your project directory
  2. Customize the file with:
    • Communication preferences
    • Specific instructions for handling tasks
    • Any other relevant guidelines for AVA

Environment Setup (.env)

  1. Create a .env file in the root directory of the project with the following variables:
USER_EMAIL=your_email_address

# Google OAuth Credentials
GOOGLE_CREDENTIALS_PATH=.config/ava-agent/credentials.json
GOOGLE_TOKEN_PATH=.config/ava-agent/token.json

Required Environment Variables:

  • USER_EMAIL: The Gmail address you want to use for this application
  • GOOGLE_CREDENTIALS_PATH: Path to your Google OAuth credentials file
  • GOOGLE_TOKEN_PATH: Path where the Google OAuth token will be stored

Google OAuth Setup

1. Create Project Directory Structure

First, create the required directory structure:

mkdir -p .config/ava-agent

2. Set Up Google Cloud Project

  1. Go to the Google Cloud Console
  2. Create a new project or select an existing one
  3. Enable the Gmail API:
    • In the navigation menu, go to "APIs & Services" > "Library"
    • Search for "Gmail API"
    • Click "Enable"

3. Create OAuth Credentials

  1. In the Google Cloud Console:

    • Go to "APIs & Services" > "Credentials"
    • Click "Create Credentials" > "OAuth client ID"
    • Choose "Desktop application" as the application type
    • Give it a name (e.g., "AVA Gmail Client")
    • Click "Create"
  2. Download the credentials:

    • After creation, click "Download JSON"
    • Save the downloaded file as credentials.json in .config/ava-agent/
    • The file should contain your client ID and client secret

4. Configure OAuth Consent Screen

  1. In the Google Cloud Console:
    • Go to "APIs & Services" > "OAuth consent screen"
    • Choose "External" user type
    • Fill in the required information:
      • App name
      • User support email
      • Developer contact information
    • Add the Gmail API scope: https://www.googleapis.com/auth/gmail.modify
    • Add your email as a test user
    • Complete the configuration

Signing into Google

Before the server can access you Gmail account you will need to authorize it. You can do this by running uv run oauth.py which does the following.

  1. Check for the presence of token.json
  2. If not found, it will initiate the Google OAuth authentication flow
  3. Guide you through the authentication process in your browser:
    • You'll be asked to sign in to your Google account
    • Grant the requested permissions
    • The application will automatically save the token
  4. Generate and store the token automatically

Security Notes

File Protection

  • Never commit your .env file or token.json to version control
  • Keep your Google credentials secure
  • Add the following to your .gitignore:
    .env
    .config/ava-agent/token.json
    .config/ava-agent/credentials.json
    

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选