AWS Advisor MCP Server
Provides AWS service recommendations based on use case descriptions and allows browsing AWS services organized by categories. Helps users discover the most suitable AWS services for their specific technical requirements.
README
AWS Advisor MCP Server
A Model Context Protocol (MCP) server that provides AWS service recommendations based on your use case descriptions.
Features
- suggest_aws_service: Get AWS service recommendations by describing your use case
- list_aws_categories: Browse AWS services organized by category (compute, storage, database, etc.)
Setup
- Install uv (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | sh
- Sync dependencies:
uv sync
This will create a virtual environment and install all dependencies.
Configuration for Cursor IDE
Add this server to your Cursor MCP settings:
- Open Cursor Settings
- Navigate to the MCP section
- Add a new server with this configuration:
{
"mcpServers": {
"aws-advisor": {
"command": "uv",
"args": [
"--directory",
"/Users/antonioschaffert/workspace/tony/my-dev-mcp",
"run",
"python",
"src/aws_advisor_server.py"
]
}
}
}
Or add it to your MCP config file (usually ~/.cursor/mcp_config.json or similar):
{
"aws-advisor": {
"command": "uv",
"args": [
"--directory",
"/Users/antonioschaffert/workspace/tony/my-dev-mcp",
"run",
"python",
"src/aws_advisor_server.py"
]
}
}
Usage
Once configured, you can use the tools in Cursor:
Example prompts:
- "What AWS service should I use for serverless computing?"
- "Suggest AWS services for storing images"
- "What's the best AWS service for a relational database?"
- "Show me AWS services for real-time data streaming"
- "List all AWS categories"
Available Tools:
-
suggest_aws_service
- Input:
use_case(string) - Description of what you want to build - Returns: Recommended AWS services with explanations
- Input:
-
list_aws_categories
- No input required
- Returns: All AWS service categories and their services
Testing Locally
You can test the server directly:
uv run python src/aws_advisor_server.py
Then send MCP protocol messages via stdin (for advanced testing).
Covered AWS Services
- Compute: EC2, Lambda, ECS, EKS, Fargate, Lightsail
- Storage: S3, EBS, EFS, Glacier, FSx
- Database: RDS, DynamoDB, Aurora, DocumentDB, ElastiCache, Neptune, Redshift
- Networking: VPC, CloudFront, Route53, API Gateway, Direct Connect, ELB
- Analytics: Athena, EMR, Kinesis, Glue, QuickSight
- ML/AI: SageMaker, Rekognition, Comprehend, Polly, Transcribe, Translate, Lex
- Security: IAM, Cognito, KMS, Secrets Manager, WAF, GuardDuty
- Messaging: SQS, SNS, EventBridge, SES
- Monitoring: CloudWatch, X-Ray, CloudTrail
Requirements
- Python 3.10+
- mcp package (>=0.9.0)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。