AWS AgentCore MCP Server
Provides comprehensive documentation about AWS AgentCore framework to GenAI tools, enabling users to build production-ready AI agents with enterprise-grade security, observability, and scalability. Offers guidance on identity management, API integration, monitoring, code execution, memory storage, and tool integration for AI agents.
README
<div align="center"> <h1>AWS AgentCore MCP Server</h1> <h2>A comprehensive framework for building, securing, monitoring, and managing AI agents at scale</h2>
<div align="center"> <a href="https://github.com/aws/aws-agentcore-mcp-server/graphs/commit-activity"><img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/m/aws/aws-agentcore-mcp-server"/></a> <a href="https://github.com/aws/aws-agentcore-mcp-server/issues"><img alt="GitHub open issues" src="https://img.shields.io/github/issues/aws/aws-agentcore-mcp-server"/></a> <a href="https://github.com/aws/aws-agentcore-mcp-server/pulls"><img alt="GitHub open pull requests" src="https://img.shields.io/github/issues-pr/aws/aws-agentcore-mcp-server"/></a> <a href="https://github.com/aws/aws-agentcore-mcp-server/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/aws/aws-agentcore-mcp-server"/></a> <a href="https://pypi.org/project/aws-agentcore-mcp-server/"><img alt="PyPI version" src="https://img.shields.io/pypi/v/aws-agentcore-mcp-server"/></a> <a href="https://python.org"><img alt="Python versions" src="https://img.shields.io/pypi/pyversions/aws-agentcore-mcp-server"/></a> </div>
<p> <a href="https://docs.aws.amazon.com/bedrock-agentcore/">Documentation</a> ◆ <a href="https://github.com/aws-samples/sample-amazon-bedrock-agentcore-onboarding">Samples</a> ◆ <a href="https://aws.github.io/bedrock-agentcore-starter-toolkit/">Starter Toolkit</a> ◆ <a href="https://github.com/aws/aws-agentcore-mcp-server">MCP Server</a> </p> </div>
This MCP server provides comprehensive documentation about AWS AgentCore to your GenAI tools, enabling you to build production-ready AI agents with enterprise-grade security, observability, and scalability.
What is AWS AgentCore?
AWS AgentCore is a comprehensive framework for building, securing, monitoring, and managing AI agents at scale on Amazon Bedrock. It provides:
- AgentCore Identity: Centralized management of agent identities and credentials
- AgentCore Gateway: Universal integration layer for APIs and external services
- AgentCore Observability: Advanced tracing, monitoring, and debugging capabilities
- AgentCore Code Interpreter: Secure code execution within sandboxed sessions
- AgentCore Memory: Short-term and long-term memory storage for context-aware agents
Prerequisites
The usage methods below require uv to be installed on your system. You can install it by following the official installation instructions.
Installation
You can use the AWS AgentCore MCP server with 40+ applications that support MCP servers, including Amazon Q Developer CLI, Anthropic Claude Code, Cline, and Cursor.
Q Developer CLI example
See the Q Developer CLI documentation for instructions on managing MCP configuration.
In ~/.aws/amazonq/mcp.json:
{
"mcpServers": {
"aws-agentcore": {
"command": "uvx",
"args": ["aws-agentcore-mcp-server"]
}
}
}
Claude Code example
See the Claude Code documentation for instructions on managing MCP servers.
claude mcp add aws-agentcore uvx aws-agentcore-mcp-server
Cline example
See the Cline documentation for instructions on managing MCP configuration.
Provide Cline with the following information:
I want to add the MCP server for AWS AgentCore.
Here's the GitHub link: @https://github.com/aws/aws-agentcore-mcp-server
Can you add it?
Cursor example
See the Cursor documentation for instructions on managing MCP configuration.
In ~/.cursor/mcp.json:
{
"mcpServers": {
"aws-agentcore": {
"command": "uvx",
"args": ["aws-agentcore-mcp-server"]
}
}
}
Available Tools
The MCP server provides the following documentation tools:
quickstart()- Get started with AWS AgentCore SDKagentcore_identity()- Learn about secure agent authentication and authorizationagentcore_gateway()- Integrate external APIs and servicesagentcore_observability()- Monitor and debug agents in productionagentcore_code_interpreter()- Execute code securely in agentsagentcore_memory()- Build context-aware agents with persistent memoryagentcore_tools()- Integrate tools and extend agent capabilities
Quick Testing
You can quickly test the MCP server using the MCP Inspector:
npx @modelcontextprotocol/inspector uvx aws-agentcore-mcp-server
Note: This requires npx to be installed on your system. It comes bundled with Node.js.
The Inspector is also useful for troubleshooting MCP server issues as it provides detailed connection and protocol information. For an in-depth guide, have a look at the MCP Inspector documentation.
Server Development
git clone https://github.com/aws/aws-agentcore-mcp-server.git
cd aws-agentcore-mcp-server
python3 -m venv venv
source venv/bin/activate
pip3 install -e .
npx @modelcontextprotocol/inspector python -m aws_agentcore_mcp_server
Example Usage
Once installed, you can ask your AI assistant questions like:
- "How do I get started with AWS AgentCore?"
- "Show me how to set up AgentCore Identity for secure authentication"
- "How do I integrate external APIs using AgentCore Gateway?"
- "What observability features does AgentCore provide?"
- "How can I add code execution capabilities to my agent?"
- "How do I implement memory in my AgentCore agent?"
- "What tools can I integrate with my AgentCore agent?"
The MCP server will provide comprehensive documentation and code examples for each AgentCore component.
Contributing ❤️
We welcome contributions! See our Contributing Guide for details on:
- Reporting bugs & features
- Development setup
- Contributing via Pull Requests
- Code of Conduct
- Reporting of security issues
License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Security
See CONTRIBUTING for more information.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。