Azure AI Image Editor MCP Server
Enables text-to-image generation and image editing using Azure AI Foundry models. Supports generating high-quality images from text descriptions and modifying existing images through natural language prompts.
README
Azure Image Editor MCP Server
中文 | English
This is an MCP (Model Context Protocol) server that supports Azure AI Foundry image generation and editing capabilities.
Features
- Text-to-Image Generation - Generate high-quality images from text descriptions using Azure AI Foundry models
- Image Editing - Edit and modify existing images
- Configurable Models - Support for multiple Azure AI models via environment variables
Project Structure
azure-image-editor/
├── .venv/ # Python virtual environment
├── src/
│ ├── azure_image_client.py # Azure API client
│ └── mcp_server.py # STDIO MCP server
├── tests/ # Test files
├── logs/ # Server logs
├── tmp/ # Temporary files
├── requirements.txt # Python dependencies
├── .env # Environment configuration
├── .env.example # Environment configuration template
└── README.md # Project documentation
Prerequisites
⚠️ Important: Before using this MCP server, you must deploy the required model in your Azure AI Foundry environment.
Azure AI Foundry Model Deployment
- Access Azure AI Foundry: Go to Azure AI Foundry
- Deploy the model: Deploy
flux.1-kontext-pro(or your preferred model) in your Azure AI Foundry workspace - Get deployment details: Note down your:
- Base URL (endpoint)
- API key
- Deployment name
- Model name
Without proper model deployment, the MCP server will not function correctly.
Installation and Setup
- Clone and setup environment:
git clone https://github.com/satomic/Azure-AI-Image-Editor-MCP.git
cd azure-image-editor
python -m venv .venv
source .venv/bin/activate # Linux/Mac
# or .venv\Scripts\activate # Windows
pip install -r requirements.txt
Configure VSCode MCP
Add the following to your VSCode MCP configuration:
{
"servers": {
"azure-image-editor": {
"command": "/full/path/to/.venv/bin/python",
"args": ["/full/path/to/azure-image-editor/src/mcp_server.py"],
"env": {
"AZURE_BASE_URL": "https://your-endpoint.services.ai.azure.com", // deployment endpoint
"AZURE_API_KEY": "${input:azure-api-key}",
"AZURE_DEPLOYMENT_NAME": "FLUX.1-Kontext-pro", // The name you gave your deployment
"AZURE_MODEL": "flux.1-kontext-pro", // Default model
"AZURE_API_VERSION": "2025-04-01-preview" // Default API version
}
}
},
"inputs": [
{
"id": "azure-api-key",
"type": "promptString",
"description": "Enter your Azure API Key",
"password": "true"
}
]
}
Important: Replace /full/path/to/ with the actual absolute path to this project directory.
Available MCP Tools
1. generate_image
Generate images from text prompts
Parameters:
prompt(required): English text description for image generationsize(optional): Image size - "1024x1024", "1792x1024", "1024x1792", default: "1024x1024"output_path(optional): Output file path, returns base64 encoded image if not provided
Example:
{
"name": "generate_image",
"arguments": {
"prompt": "A beautiful sunset over mountains",
"size": "1024x1024",
"output_path": "/path/to/output/image.png"
}
}
2. edit_image
Edit existing images with intelligent dimension preservation
Parameters:
image_path(required): Path to the image file to editprompt(required): English text description of how to edit the imagesize(optional): Output image size, uses original dimensions if not specifiedoutput_path(optional): Output file path, returns base64 encoded image if not provided
Example:
{
"name": "edit_image",
"arguments": {
"image_path": "/path/to/input/image.png",
"prompt": "Make this black and white",
"output_path": "/path/to/output/edited_image.png"
}
}
Technical Specifications
-
Python version: 3.8+
-
Main dependencies:
mcp: MCP protocol supporthttpx: HTTP client with timeout handlingpillow: Image processing and dimension detectionaiofiles: Async file operationspydantic: Data validationpython-dotenv: Environment variable management
-
Azure AI Foundry:
- Default model: flux.1-kontext-pro (configurable)
- Default API version: 2025-04-01-preview (configurable)
- Supported image sizes: 1024x1024, 1792x1024, 1024x1792
- Timeout: 5 minutes per request
Troubleshooting
- Timeout Errors: Image processing has 5-minute timeout, check network connectivity
- API Errors: Verify Azure credentials and endpoint URL
- Dependency Issues: Ensure virtual environment is activated and dependencies installed
- Server Connection Issues: Verify VSCode MCP configuration path is correct
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。