
Azure AI MCP Server
Enables comprehensive integration with Azure AI services including OpenAI, Cognitive Services, Computer Vision, and Face API through a mission-critical MCP server. Provides enterprise-grade reliability with high availability, observability, chaos engineering, and secure multi-region deployment capabilities.
README
Azure AI MCP Server
A mission-critical Model Context Protocol (MCP) server providing comprehensive Azure AI services integration with enterprise-grade reliability, observability, and chaos engineering capabilities.
🚀 Features
Core Azure AI Services
- Azure OpenAI: Chat completions, embeddings, and text generation
- Cognitive Services Text Analytics: Sentiment analysis, entity recognition, key phrase extraction
- Computer Vision: Image analysis, object detection, OCR
- Face API: Face detection, recognition, and analysis
- Azure Storage: Blob storage integration for data persistence
Mission-Critical Capabilities
- High Availability: Multi-region deployment with automatic failover
- Observability: Comprehensive logging, metrics, and distributed tracing
- Security: Azure AD integration, API key management, and encryption at rest/transit
- Rate Limiting: Intelligent throttling and backpressure handling
- Retry Logic: Exponential backoff with circuit breaker patterns
- Chaos Engineering: Built-in chaos testing with Azure Chaos Studio
DevOps & CI/CD
- Infrastructure as Code: Terraform modules for all environments
- Multi-Environment: Integration, E2E, and Production pipelines
- Container Support: Docker containerization with health checks
- Monitoring: Azure Monitor, Application Insights integration
- Security Scanning: Automated vulnerability assessments
📋 Prerequisites
- Node.js 18+
- Azure subscription with appropriate permissions
- Azure CLI installed and configured
- Terraform 1.5+
- Docker (optional, for containerized deployment)
🔧 Installation
1. Clone and Setup
git clone https://github.com/caiotk/nexguideai-azure-ai-mcp-server.git
cd azure-ai-mcp-server
npm install
2. Environment Configuration
Copy the environment template and configure your Azure credentials:
cp .env.example .env
Required environment variables:
# Azure OpenAI
AZURE_OPENAI_ENDPOINT=https://your-openai.openai.azure.com/
AZURE_OPENAI_API_KEY=your-api-key
# Azure Cognitive Services
AZURE_COGNITIVE_SERVICES_ENDPOINT=https://your-region.api.cognitive.microsoft.com/
AZURE_COGNITIVE_SERVICES_KEY=your-key
# Azure Storage
AZURE_STORAGE_CONNECTION_STRING=your-connection-string
# Azure AD (for production)
AZURE_TENANT_ID=your-tenant-id
AZURE_CLIENT_ID=your-client-id
AZURE_CLIENT_SECRET=your-client-secret
# Monitoring
AZURE_APPLICATION_INSIGHTS_CONNECTION_STRING=your-connection-string
LOG_LEVEL=info
3. Build and Run
npm run build
npm start
🏗️ Architecture
System Overview
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ MCP Client │────│ Azure AI MCP │────│ Azure Services │
│ │ │ Server │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ Observability │
│ & Monitoring │
└─────────────────┘
Component Architecture
- API Layer: MCP protocol implementation with request validation
- Service Layer: Azure AI service integrations with retry logic
- Infrastructure Layer: Terraform modules for cloud resources
- Observability Layer: Logging, metrics, and distributed tracing
🔄 CI/CD Pipeline
Environments
- Integration (INT): Feature testing and integration validation
- End-to-End (E2E): Full system testing with chaos engineering
- Production (PROD): Live environment with blue-green deployment
Pipeline Stages
Build → Test → Security Scan → Deploy INT → E2E Tests → Chaos Tests → Deploy PROD
Deployment Strategy
- Blue-Green Deployment: Zero-downtime deployments
- Canary Releases: Gradual traffic shifting for risk mitigation
- Automated Rollback: Automatic rollback on health check failures
🧪 Testing Strategy
Test Pyramid
- Unit Tests: Individual component testing (Jest)
- Integration Tests: Service integration validation
- E2E Tests: Full workflow testing
- Chaos Tests: Resilience and failure scenario testing
Chaos Engineering
Integrated with Azure Chaos Studio for:
- Service Disruption: Simulated Azure service outages
- Network Latency: Increased response times
- Resource Exhaustion: CPU/Memory pressure testing
- Dependency Failures: External service failures
📊 Monitoring & Observability
Metrics
- Performance: Response times, throughput, error rates
- Business: API usage, feature adoption, cost optimization
- Infrastructure: Resource utilization, availability
Logging
- Structured Logging: JSON format with correlation IDs
- Log Levels: ERROR, WARN, INFO, DEBUG
- Centralized: Azure Log Analytics integration
Alerting
- SLA Monitoring: 99.9% availability target
- Error Rate Thresholds: >1% error rate alerts
- Performance Degradation: Response time anomalies
🔒 Security
Authentication & Authorization
- Azure AD Integration: Enterprise identity management
- API Key Management: Secure key rotation and storage
- RBAC: Role-based access control
Data Protection
- Encryption at Rest: Azure Storage encryption
- Encryption in Transit: TLS 1.3 for all communications
- Data Residency: Configurable data location compliance
Security Scanning
- Dependency Scanning: Automated vulnerability detection
- SAST: Static application security testing
- Container Scanning: Docker image vulnerability assessment
🚀 Deployment
Local Development
npm run dev
Docker Deployment
npm run docker:build
npm run docker:run
Terraform Deployment
cd terraform/environments/prod
terraform init
terraform plan
terraform apply
📈 Performance
Benchmarks
- Latency: P95 < 500ms for chat completions
- Throughput: 1000+ requests/minute sustained
- Availability: 99.9% uptime SLA
Optimization
- Connection Pooling: Efficient Azure service connections
- Caching: Intelligent response caching strategies
- Rate Limiting: Adaptive throttling based on service limits
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
Development Guidelines
- Follow TypeScript strict mode
- Maintain 90%+ test coverage
- Use conventional commits
- Update documentation for new features
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
- Documentation: docs/
- Issues: GitHub Issues
- Discussions: GitHub Discussions
🗺️ Roadmap
- [ ] Multi-model support (GPT-4, Claude, Gemini)
- [ ] Advanced caching strategies
- [ ] GraphQL API support
- [ ] Kubernetes deployment manifests
- [ ] Advanced chaos engineering scenarios
- [ ] Cost optimization recommendations
Built with ❤️ by NexGuide AI
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。