Azure AI Search MCP Server

Azure AI Search MCP Server

Enables Claude to search and retrieve documents from Azure AI Search indexes with intelligent summarization and analysis using LangGraph workflows and optional Google Gemini integration.

Category
访问服务器

README

Azure AI Search MCP Server 🔍🤖

<!-- SEO Keywords: Azure AI Search, MCP Server, Claude Desktop, LangGraph, RAG, Retrieval Augmented Generation, Document Search, AI Search Integration, Model Context Protocol, Enterprise Search -->

Python 3.8+ Azure AI Search LangGraph Model Context Protocol

An intelligent Model Context Protocol (MCP) server for Azure AI Search integration with Claude Desktop - Transform enterprise document search into natural AI conversations using LangGraph workflows, Google Gemini, and advanced retrieval-augmented generation (RAG).

🔥 Keywords: Azure Cognitive Search, MCP Server, Claude Desktop Integration, LangGraph AI Workflows, Document Retrieval, Enterprise Search, RAG Implementation, AI-Powered Search, Conversational AI, Knowledge Management

🚀 Perfect for: Enterprise search solutions, document analysis platforms, knowledge management systems, AI-powered research tools, intelligent document retrieval, conversational search interfaces, and RAG (Retrieval-Augmented Generation) applications.

Requirements: Python 3.8+ | Azure AI Search Service | Claude Desktop | Google Gemini API (optional)

Features

  • 🔍 Azure AI Search Integration: Connect to your Azure AI Search index
  • 🔄 LangGraph Chain: Intelligent query processing and context retrieval
  • 🧠 Google Gemini Integration: Enhanced document formatting, summarization, and analysis
  • 🎨 Enhanced Visualizations: Grandalf layouts, Mermaid diagrams, and ASCII art
  • 📊 LangSmith Tracing: Full observability and debugging of chain executions
  • 🐍 MCP Protocol: Expose functionality as tools that Claude can use directly
  • ⚙️ Configurable: Easy setup with environment variables
  • 🔧 Pydantic Validation: Type-safe configuration and data validation
  • 🌍 Environment Management: Secure credential handling with python-dotenv
  • 🎭 Persona-Driven Responses: Two distinct AI personas for different output styles
  • 📝 JSON-Based Prompts: Easily editable prompt templates
  • 🧪 Comprehensive Testing: Full test suite with multiple scenarios

Table of Contents

Technical Stack

Core Technologies

  • Python 3.8+: Modern Python with asyncio support
  • LangChain/LangGraph: AI workflow orchestration and state management
  • Azure AI Search: Cloud-based document indexing and retrieval
  • Google Gemini: Large language model for content processing
  • Model Context Protocol (MCP): Standard protocol for AI tool integration

Configuration & Validation

  • Pydantic v2: Type-safe configuration models with automatic validation
  • python-dotenv: Environment variable management and secrets handling
  • Structured Logging: Comprehensive error tracking and debugging

Visualization & Development

  • Grandalf: Advanced graph layout algorithms for LangGraph visualization
  • Mermaid: Professional diagram generation for documentation
  • LangSmith: Observability and tracing for AI chain executions
  • Pytest: Comprehensive testing framework with async support

Quick Setup

  1. Clone and Install:

    git clone https://github.com/codewith-mm/langgraph-claude-azure-mcp.git
    cd langgraph-claude-azure-mcp
    pip install -e .
    
  2. Configure Environment: Copy .env.example to .env and fill in your credentials:

    # On Windows (PowerShell):
    Copy-Item .env.example .env
    # On macOS/Linux:
    cp .env.example .env
    
  3. Run the MCP Server:

    azure-search-mcp
    

Configuration

Create a .env file in the project root with the following variables:

# Azure AI Search
AZURE_SEARCH_ENDPOINT=https://your-search-service.search.windows.net
AZURE_SEARCH_API_KEY=your-search-admin-key
AZURE_SEARCH_INDEX_NAME=your-index-name

# Google Gemini (for enhanced AI processing)
GOOGLE_API_KEY=your-google-api-key
GEMINI_MODEL=gemini-1.5-flash
GEMINI_TEMPERATURE=0.1

# LangSmith (for tracing and debugging)
LANGCHAIN_TRACING_V2=true
LANGCHAIN_ENDPOINT=https://api.smith.langchain.com
LANGCHAIN_API_KEY=your-langsmith-api-key
LANGCHAIN_PROJECT=azure-search-mcp

Google Gemini Setup

  1. Get API Key: Visit Google AI Studio
  2. Create API Key: Generate a new API key for your project
  3. Add to Environment: Set GOOGLE_API_KEY in your .env file

The server will automatically:

  • Use Google Gemini for document formatting and summarization when API key is configured
  • Fall back to basic formatting if no API key is provided
  • Create proper LangChain chains that appear in LangSmith tracing

Claude Desktop Integration

Step 1: Locate Claude Desktop Configuration

Claude Desktop stores its configuration in a JSON file. Example (Windows):

%APPDATA%/Claude/claude_desktop_config.json

Step 2: MCP Server Configuration

Add this configuration to your Claude Desktop config file (update paths as needed for your environment):

{
   "mcpServers": {
      "azure-search-mcp": {
         "command": "python",
         "args": [
            "-m",
            "azure_search_mcp"
         ],
         "cwd": "../langgraph-claude-azure-mcp",
         "env": {
            "PYTHONPATH": "../langgraph-claude-azure-mcp/src"
         }
      }
   }
}

Step 3: Testing the Integration

Ask Claude to:

  1. Search for CEO compensation:

    "Can you search for CEO compensation information using the Azure Search tool?"
    
  2. Analyze executive pay:

    "Use the search tool to find and analyze executive compensation data"
    
  3. Get document summaries:

    "Search for salary information and provide a summary"
    

Project Structure

langgraph-claude-azure-mcp/
├── README.md                    # This comprehensive guide
├── pyproject.toml               # Python project configuration
├── pytest.ini                   # Pytest configuration
├── .env.example               # Environment variables template
├── claude_mcp_config.json     # Claude Desktop MCP configuration
├── visualize.py               # Quick visualization launcher
│
├── src/                       # Source code
│   └── azure_search_mcp/      # Main package
│       ├── __init__.py        # Package initialization
│       ├── __main__.py        # CLI entry point
│       ├── config.py          # Configuration management
│       ├── prompts.json       # JSON-based prompt templates
│       ├── prompt_manager.py  # Prompt loading and management
│       ├── azure_search.py    # Azure AI Search client
│       ├── chain.py           # LangGraph chain implementation  
│       └── server.py          # MCP server implementation
│
├── tests/                     # Comprehensive test suite
│   ├── test_chain.py          # Chain functionality tests
│   ├── test_integration.py    # Integration tests
│   ├── test_env_loading.py    # Environment configuration tests
│   ├── verify_claude_setup.py # Claude setup verification
│   └── run_tests.py           # Test runner script
│
├── visualization/             # Graph visualization tools
│   ├── dynamic_graph_viz.py   # Main visualization engine
│   └── visualize_launcher.py  # Launcher script
│
├── tools/                     # Development and debug tools
│   ├── debug_tools_timeout.py # Debugging utilities
│   └── test_prompts_list.py   # Prompt testing tools
│
└── docs/                      # Specialized documentation
    ├── guides/                # Setup guides
    │   └── CLAUDE_SETUP_GUIDE.md # Detailed Claude setup
    └── development/           # Development documentation
        └── [various dev docs] # Technical implementation details

Architecture Overview

Core Components

  1. chain.py - LangGraph-based workflow engine

    • SearchState management
    • Three output formats (structured, summary, analysis)
    • Persona-driven prompt routing
  2. prompt_manager.py - JSON-based prompt system

    • Dynamic template loading
    • Two persona management (Financial Analyst and Search Quality Rater)
    • Hot-reloadable configurations
  3. server.py - MCP server implementation

    • Tool definitions and handlers
    • Claude Desktop integration
    • Error handling and logging
  4. azure_search.py - Azure AI Search client

    • Document retrieval
    • Vector and hybrid search
    • Result formatting
  5. config.py - Configuration management

    • Environment variable handling with python-dotenv
    • Service configurations (Azure, Gemini, LangSmith)
    • Pydantic-based validation and type safety
    • Secure defaults and configuration validation

Key Features

  • 🎭 Persona-Driven Responses: Two distinct AI personas for different output styles
  • 🔄 LangGraph Workflow: State-based processing with intelligent routing
  • 📝 JSON-Based Prompts: Easily editable prompt templates
  • 🔍 Azure AI Search: Advanced document retrieval capabilities
  • 🧠 Gemini Integration: Google's LLM for content processing
  • 📊 LangSmith Tracing: Comprehensive observability
  • 🐍 Claude Desktop: Native MCP integration
  • 🔧 Pydantic Models: Type-safe configuration with automatic validation
  • 🌍 Secure Configuration: Environment-based secrets management with python-dotenv

Available Tools

  • search_documents: Search for relevant documents in Azure AI Search using text queries
  • get_document_context: Retrieve detailed context from specific documents by their IDs
  • search_and_summarize: Search and get a summarized view of results
  • search_with_analysis: Search with relevance analysis

Each tool supports different output formats:

  • structured: Detailed formatting with clear sections
  • summary: Concise overview with key points
  • analysis: In-depth analysis with insights and recommendations

Visualization Tools

The system includes comprehensive graph visualization capabilities for inspecting LangGraph structures:

Quick Visualization

# Comprehensive visualization
python visualize.py full

# Demo all methods
python visualize.py demo

Built-in Method

from azure_search_mcp.chain import AzureSearchChain

chain = AzureSearchChain()
chain.print_graph_diagram()  # Prints dynamic graph structure

Features

  • 🎨 Mermaid Diagrams: Color-coded nodes with professional styling
  • 🖼️ ASCII Art: Terminal-friendly graph representations
  • 📐 Advanced Layouts: Grandalf integration for enhanced positioning
  • 📁 File Export: Export diagrams as .mmd and .json files
  • 🔄 100% Dynamic: Automatically adapts to any graph structure changes
  • 🏷️ Type Detection: Shows node types and state structure

Example Output

Mermaid Diagram

graph TD
   validate_input["Validate Input"]
   search_documents["Search Documents"]
   prepare_context["Prepare Context"]
   summarize_results["Summarize Results"]
   analyze_results["Analyze Results"]
   format_structured["Format Structured"]
   handle_error["Handle Error"]
   END((END))

   validate_input -->|continue| search_documents
   validate_input -->|error| handle_error
   search_documents -->|continue| prepare_context
   search_documents -->|error| handle_error
   prepare_context -->|summary| summarize_results
   prepare_context -->|analysis| analyze_results
   prepare_context -->|structured| format_structured
   summarize_results --> END
   analyze_results --> END
   format_structured --> END
   handle_error --> END

   style validate_input fill:#fff3e0,stroke:#ff9800,stroke-width:2px
   style search_documents fill:#e3f2fd,stroke:#1976d2,stroke-width:2px
   style prepare_context fill:#f3e5f5,stroke:#8e24aa,stroke-width:2px
   style summarize_results fill:#e8f5e9,stroke:#388e3c,stroke-width:2px
   style analyze_results fill:#fffde7,stroke:#fbc02d,stroke-width:2px
   style format_structured fill:#fbe9e7,stroke:#d84315,stroke-width:2px
   style handle_error fill:#ffebee,stroke:#c62828,stroke-width:2px
   style END fill:#eeeeee,stroke:#616161,stroke-width:2px

ASCII Art

🎨 ASCII DIAGRAM:
──────────────────────────────────────────────────────────────────────────────
      □ validate_input
         │   │
         │   └─(continue)──► □ search_documents
         │           │   │
         │           │   └─(continue)──► □ prepare_context
         │           │           │
         │           │           ├─(summary)──► □ summarize_results ──► ◉ END
         │           │           ├─(analysis)─► □ analyze_results ─────► ◉ END
         │           │           └─(structured)─► □ format_structured ─► ◉ END
         │           └─(error)────► □ handle_error ────────────────────► ◉ END
         └─(error)────► □ handle_error ────────────────────────────────► ◉ END
──────────────────────────────────────────────────────────────────────────────

Testing

Essential Test Suite

The test suite has been streamlined to include only the most essential tests:

  1. Core Chain Tests (test_chain.py)

    • Chain functionality and state management
    • Search tool functionality
    • Routing logic and conditional edges
    • Prompt template validation
  2. Integration Tests (test_integration.py)

    • End-to-end MCP server functionality
    • Search functionality validation
    • Server initialization and protocol compliance
  3. Environment Configuration (test_env_loading.py)

    • Environment variable loading
    • Configuration validation
    • API key verification
  4. Claude Setup Verification (verify_claude_setup.py)

    • MCP server command validation
    • Claude Desktop integration check

Running Tests

# Run all essential tests
python tests/run_tests.py

# Run specific test categories
python -m pytest tests/test_chain.py -v
python -m pytest tests/test_integration.py -v

# Run environment check only
python tests/test_env_loading.py

Development

Setup Development Environment

  1. Install development dependencies:

    pip install -e ".[dev]"
    
  2. Run tests:

    pytest
    
  3. Format code:

    black src/
    ruff check src/   ```
    
    

Adding Features

  • Adding Tests: Place in tests/ directory with test_*.py naming
  • Modifying Prompts: Edit src/azure_search_mcp/prompts.json
  • Configuration: Update src/azure_search_mcp/config.py
  • New Tools: Add to src/azure_search_mcp/server.py

Project Tasks

The following VS Code tasks are available:

  • Start MCP Server: Launch the MCP server for testing
  • Start MCP Server (Conda): Launch using conda environment
  • Test MCP Server (Standalone): Run standalone tests

LangSmith Monitoring

Setup LangSmith (Recommended)

LangSmith provides excellent tracing and monitoring for your MCP server:

  1. Sign up for LangSmith: Visit smith.langchain.com
  2. Get your API key: Go to Settings → API Keys → Create API Key
  3. Update your .env file with your real LangSmith API key:
    LANGCHAIN_API_KEY=lsv2_pt_your_actual_api_key_here
    
  4. Test the integration by running the MCP server and checking the LangSmith dashboard

Benefits of LangSmith Integration

  • 📊 Trace Operations: All search operations and performance metrics
  • 🔍 Debug Issues: Search queries and results debugging
  • 📈 Monitor Usage: Usage patterns and response times
  • 🚨 Get Alerts: Error notifications and performance issues
  • 🔗 View Traces: Detailed execution traces for each Claude interaction

What Gets Traced

  • ✅ Individual tool calls from Claude
  • ✅ Azure AI Search query execution
  • ✅ Document retrieval and formatting
  • ✅ LangGraph workflow execution
  • ✅ Performance metrics and timing

Troubleshooting

Common Issues

Claude doesn't see the tools

  • Solution: Check the config file path and restart Claude Desktop completely

MCP server fails to start

  • Solution: Test the server manually:
    cd .\langgraph-claude-azure-mcp\src
    python -m azure_search_mcp
    

Authentication errors

  • Solution: Verify your .env file has the correct Azure Search credentials

No search results

  • Solution: Test your Azure Search index manually to ensure it has documents

Import or dependency errors

  • Solution: Ensure all dependencies are installed:
    pip install -e .
    

Configuration Files Summary

Claude Desktop Config Location:

.\AppData\Roaming\Claude\claude_desktop_config.json

MCP Server Location:

.\langgraph-claude-azure-mcp\src\azure_search_mcp\

Environment Variables:

.\langgraph-claude-azure-mcp\.env

LangSmith Integration:

  • ✅ Tracing configured and ready
  • 📊 Monitors all search operations
  • 🔗 Dashboard: https://smith.langchain.com
  • 🧪 Test by using the MCP server with Claude

�🎉 You're all set! Your Azure AI Search MCP server is ready to provide intelligent document retrieval and analysis to Claude Desktop, with comprehensive visualization tools and optional LangSmith monitoring for performance insights.

📈 SEO Keywords

Azure AI Search, MCP Server, Claude Desktop, LangGraph, RAG, Retrieval Augmented Generation, Document Search, AI Search Integration, Model Context Protocol, Enterprise Search, Conversational AI, Knowledge Management, Semantic Search, NLP, Machine Learning, Chatbots, Search Engine, Information Retrieval, Python AI, Azure Integration

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选