Azure HPC/AI MCP Server
Enables users to query Azure HPC/AI Kubernetes clusters for GPU node information and InfiniBand topology details through kubectl commands. Provides tools to list GPU pool nodes with their status and retrieve network topology labels for high-performance computing workloads.
README
Azure HPC/AI MCP Server
A minimal Model Context Protocol (MCP) server tailored for Azure HPC/AI clusters. It provides tools that query Kubernetes for GPU node information using kubectl. The server is implemented with fastmcp and uses synchronous subprocess calls (no asyncio).
Tools
- list_nodes: Lists nodes in the GPU pool with name, labels, and Ready/NotReady status.
- get_node_topologies: Returns InfiniBand-related topology labels per node: agentpool, pkey, torset.
Both tools shell out to kubectl and return JSON-serializable Python structures (lists of dicts).
Run the server
Prerequisites:
- Python 3.10+
- kubectl configured to access your cluster
Installation
It’s recommended to use a virtual environment.
Create and activate a venv (Linux/macOS):
python3 -m venv .venv
source .venv/bin/activate
python -m pip install -U pip
Install dependencies with pip:
pip install -r requirements.txt
Notes:
- fastmcp is required to run the server and is installed via
requirements.txt. Tests don’t need it (they stub it). - If fastmcp isn’t on PyPI for your environment, install it from its source per its documentation.
Run:
python server.py
The server runs over stdio for MCP hosts. You can connect to it with an MCP-compatible client or call the tools locally with the helper script below.
invoke_local helper
The invoke_local.py script lets you execute server tools in-process without an MCP host. It discovers exported tools from server.py, calls them synchronously, and prints pretty JSON.
Examples:
# List nodes
python invoke_local.py list_nodes
# Get IB topology labels
python invoke_local.py get_node_topologies
# Passing parameters (if a tool defines any):
python invoke_local.py some_tool --params '{"key":"value"}'
Implementation notes:
- No asyncio is used; tool functions call
subprocess.rundirectly and return plain Python data. - The script unwraps simple function tools or FastMCP FunctionTool-like wrappers and invokes them with kwargs from
--paramswhen provided.
Tests
The tests are written with pytest and exercise success and error paths without requiring a cluster.
Key points:
- subprocess-based: Tests monkeypatch
subprocess.runto simulatekubectloutput and errors. There is no usage of asyncio in code or tests. - fastmcp-free: Tests inject a lightweight dummy
FastMCPmodule so importingserver.pydoes not require the real dependency. - Coverage: Both tools are validated for JSON parsing, Ready condition handling, missing labels, and
kubectlfailures.
Run tests:
python -m pip install -U pytest
pytest -q
Troubleshooting
- kubectl not found: Ensure
kubectlis installed and on PATH for real runs. Tests do not require it. - No nodes returned: Confirm your label selectors match your cluster (tools currently expect GPU/IB labels used in Azure HPC/AI pools).
- fastmcp import error: Install
fastmcpfor runtime; tests provide a dummy stub so you can runpytestwithout it.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。