Azure Model Context Protocol (MCP) Hub
Okay, here's a breakdown of resources for building and integrating Model Context Protocol (MCP) servers on Azure using multiple languages. Since MCP is a relatively new and evolving area, direct, comprehensive "one-stop-shop" resources are still emerging. I'll provide the best available information, focusing on the core components and how to adapt them to different languages on Azure. **Understanding Model Context Protocol (MCP)** * **Core Concept:** MCP is designed to provide a standardized way for AI models to access contextual information (e.g., user data, environment data, session history) at runtime. This allows models to make more informed and personalized decisions. * **Key Components:** * **MCP Server:** The central component that manages and serves the contextual data. This is what you'll be building. * **MCP Client:** The code within your AI model or application that requests data from the MCP Server. * **Data Sources:** The systems that hold the contextual information (databases, APIs, caches, etc.). **General Approach for Building an MCP Server on Azure** 1. **Choose a Language/Framework:** Select a language and framework suitable for building a web API. Popular choices include: * **Python (with Flask or FastAPI):** Excellent for rapid development and has a large ecosystem of libraries. * **C# (.NET):** Strong performance, well-suited for enterprise applications, and integrates seamlessly with Azure services. * **Node.js (with Express):** Good for building scalable and real-time applications. * **Java (with Spring Boot):** Another robust option for enterprise-grade solutions. 2. **Define the MCP API:** Design the API endpoints that your MCP Server will expose. This will likely involve: * **Request Format:** How the client will request data (e.g., using a specific ID or set of parameters). JSON is a common choice. * **Response Format:** The structure of the data returned by the server (again, likely JSON). * **Authentication/Authorization:** How you'll secure the API to ensure only authorized clients can access the data. 3. **Implement the API Logic:** Write the code to: * Receive requests. * Fetch data from the appropriate data sources. * Transform the data into the required response format. * Handle errors gracefully. 4. **Deploy to Azure:** Choose an Azure service to host your MCP Server: * **Azure App Service:** A fully managed platform for hosting web applications. Good for most scenarios. * **Azure Functions:** Serverless compute, ideal for event-driven architectures or APIs with infrequent usage. * **Azure Kubernetes Service (AKS):** For more complex deployments requiring container orchestration. * **Azure Container Apps:** A serverless container service that simplifies deploying containerized applications. 5. **Secure the API:** Implement authentication and authorization. Options include: * **Azure Active Directory (Azure AD):** For enterprise identity management. * **API Keys:** A simpler approach for less sensitive data. * **Managed Identities:** Allow your Azure resources to authenticate to other Azure services without needing to manage credentials. 6. **Monitor and Log:** Use Azure Monitor to track the performance and health of your MCP Server. Implement logging to help diagnose issues. **Language-Specific Resources and Examples (Adaptable for MCP)** While direct MCP examples in multiple languages are scarce, you can adapt existing Azure API examples: * **Python (Flask/FastAPI):** * **Azure App Service with Python:** [https://learn.microsoft.com/en-us/azure/app-service/quickstart-python](https://learn.microsoft.com/en-us/azure/app-service/quickstart-python) * **Azure Functions with Python:** [https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-python](https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-python) * **Example (Conceptual):** You would adapt these examples to: * Define API endpoints for your MCP data requests (e.g., `/context/{user_id}`). * Fetch data from your data sources (e.g., Azure Cosmos DB, Azure SQL Database). * Return the data in a JSON format. * **C# (.NET):** * **Azure App Service with .NET:** [https://learn.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore](https://learn.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore) * **Azure Functions with C#:** [https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-vs](https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-vs) * **Example (Conceptual):** Similar to Python, you'd create API controllers to handle MCP requests, access data sources using Entity Framework or other data access libraries, and return JSON responses. * **Node.js (Express):** * **Azure App Service with Node.js:** [https://learn.microsoft.com/en-us/azure/app-service/quickstart-nodejs](https://learn.microsoft.com/en-us/azure/app-service/quickstart-nodejs) * **Azure Functions with Node.js:** [https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-node](https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-node) * **Example (Conceptual):** Use Express to define routes for your MCP API, connect to data sources using libraries like `pg` (for PostgreSQL) or `mongodb` (for MongoDB), and return JSON data. * **Java (Spring Boot):** * **Azure App Service with Java:** [https://learn.microsoft.com/en-us/azure/app-service/quickstart-java](https://learn.microsoft.com/en-us/azure/app-service/quickstart-java) * **Azure Functions with Java:** [https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-java](https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-first-java) * **Example (Conceptual):** Use Spring Boot's REST controller features to create API endpoints, use Spring Data JPA or JDBC to access databases, and return JSON responses. **Key Considerations for MCP Implementation** * **Data Consistency:** Ensure that the data served by your MCP Server is consistent and up-to-date. Consider using caching mechanisms (e.g., Azure Cache for Redis) to improve performance and reduce load on your data sources. * **Scalability:** Design your MCP Server to handle a large number of requests. Azure App Service and Azure Functions can scale automatically. For more demanding workloads, consider AKS. * **Latency:** Minimize the latency of data retrieval. Optimize your data queries and use caching effectively. Consider the geographic location of your MCP Server and your AI models. * **Security:** Protect the data served by your MCP Server. Use strong authentication and authorization mechanisms. Encrypt data in transit and at rest. * **Data Governance:** Implement policies to ensure that data is used responsibly and ethically. Comply with relevant data privacy regulations (e.g., GDPR, CCPA). **Example Scenario (Python with FastAPI on Azure App Service)** 1. **FastAPI App:** ```python from fastapi import FastAPI, HTTPException from azure.cosmos import CosmosClient, PartitionKey from typing import Optional import os app = FastAPI() # Azure Cosmos DB Configuration (replace with your actual values) COSMOS_ENDPOINT = os.environ["COSMOS_ENDPOINT"] COSMOS_KEY = os.environ["COSMOS_KEY"] DATABASE_NAME = "mcp_db" CONTAINER_NAME = "user_context" # Initialize Cosmos DB client cosmos_client = CosmosClient(COSMOS_ENDPOINT, COSMOS_KEY) database = cosmos_client.get_database_client(DATABASE_NAME) container = database.get_container_client(CONTAINER_NAME) @app.get("/context/{user_id}") async def get_user_context(user_id: str): """ Retrieves user context data from Cosmos DB. """ try: item = container.read_item(item=user_id, partition_key=user_id) return item except Exception as e: raise HTTPException(status_code=404, detail="User context not found") @app.get("/health") async def health_check(): return {"status": "ok"} ``` 2. **Deployment to Azure App Service:** * Create an Azure App Service instance. * Configure environment variables for `COSMOS_ENDPOINT` and `COSMOS_KEY`. * Deploy the Python code to the App Service. You'll likely need a `requirements.txt` file listing dependencies (e.g., `fastapi`, `azure-cosmos`). **Important Notes:** * **MCP is Evolving:** The Model Context Protocol is still under development. Expect changes and updates to the specifications and available tools. * **Customization is Key:** You'll need to tailor your MCP Server to the specific needs of your AI models and data sources. * **Security Best Practices:** Always prioritize security when building and deploying your MCP Server. I hope this comprehensive guide helps you get started with building and integrating MCP servers on Azure using multiple languages! Remember to adapt the examples and resources to your specific requirements.
Azure-Samples
README
Azure 模型上下文协议 (MCP) 中心
快速构建调用真实 API 的 AI 代理。 无论您是 C#、Python、Java 还是 JavaScript 开发人员,此中心都能帮助您在 Azure 上构建、运行或重用 模型上下文协议 (MCP) 服务器,从而为您的 AI 代理提供支持。
🚀 1. 运行您自己的 MCP 服务器
使用 Azure Functions 托管您自己的 MCP 服务器 — 选择您的语言:
🧠 2. 构建使用 MCP 的代理
使用官方 SDK 或您喜欢的 AI 框架来编写连接到任何 MCP 服务器的代理。
✅ 官方 MCP SDK(构建任何语言的客户端、服务器或工具)
🤖 AI SDK 集成
- Python: OpenAI Agents SDK — 将 MCPServerSse 与 Azure OpenAI 结合使用
- C#: Semantic Kernel — 将 MCP 工具添加到您的 Kernel 实例
- JavaScript: LangChain.js — 在 LangChain 或 LangGraph 代理中使用 MCP 工具
- Java: Spring AI — 通过自动配置插入 Spring Boot
- Azure AI Agents — 将 Bing + Azure AI Search 添加到您的代理
🧩 3. 使用即插即用的 MCP 服务器
不想构建自己的工具? 这些服务器通过 MCP 公开真实的 API,因此您的代理可以直接调用它们。
⚠️ 这些服务器是开源的,由社区维护。 Microsoft 不会审查、支持或认可它们。 请自行决定使用。
🗃️ 数据 API
- Redis — 访问 Azure Redis
- PostgreSQL — 查询 Azure PostgreSQL
- MySQL — 与 Azure MySQL 一起使用
- MongoDB — 与 带有 MongoDB 的 Cosmos DB 通信
- Azure Data Explorer (ADX) — 通过代理运行 KQL 查询
🔧 开发和基础架构 API
- Azure CLI — 使用自然语言运行 CLI 命令
- Kubernetes — 控制 AKS 集群
- GitHub — 通过聊天或代理访问 GitHub API
- Azure DevOps (Python) — 工作项支持
- Azure DevOps (Node.js) — 存储库、管道和面板
📚 了解更多
- 📄 模型上下文协议规范
- 🧪 在链接的存储库中探索示例代理、工具和服务器
- 🤝 通过 PR 贡献新的服务器或工具!
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
MCP Package Docs Server
促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。
Claude Code MCP
一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。
@kazuph/mcp-taskmanager
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
mermaid-mcp-server
一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。
Jira-Context-MCP
MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

Linear MCP Server
一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。
Curri MCP Server
通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。