Azure Omni-Tool MCP Server
Enables intelligent interaction with Azure resources through natural language by translating requests into safe, auditable Azure CLI commands with plan/review workflows and direct access to 8 Azure services including Storage, Cosmos DB, Key Vault, and more.
README
Azure Omni-Tool MCP Server
A Model Context Protocol (MCP) server in TypeScript that acts as an intelligent bridge between natural language requests and Azure CLI execution.
Features
✅ Plan/Execute Flow - Review commands before execution
✅ Safety Guardrails - Shell injection detection, destructive command warnings
✅ Audit Trail - Operator email tagging for traceability
✅ Retry Logic - Exponential backoff for transient failures
✅ Caching - LRU cache with configurable TTL
✅ Tenant Scoping - Configure tenant/subscription via environment
✅ Azure Service Adapters - Type-safe access to 8 Azure services
Architecture Overview
flowchart TB
subgraph Client["🖥️ Client Layer"]
LLM[LLM / AI Agent]
end
subgraph MCP["⚙️ MCP Server"]
direction TB
Entry[index.ts]
subgraph Tools["Tools"]
T1[manage_azure_resources]
T2[get_azure_context]
T3[azure_service]
end
subgraph Lib["Core Libraries"]
Auth[auth.ts]
Cache[cache.ts]
CLI[cli-executor.ts]
Retry[retry.ts]
Safety[safety.ts]
Audit[audit.ts]
end
subgraph Services["Service Adapters"]
S1[StorageService]
S2[CosmosService]
S3[SearchService]
S4[KustoService]
S5[MonitorService]
S6[AppConfigService]
S7[KeyVaultService]
S8[PostgresService]
end
end
subgraph Azure["☁️ Azure"]
AzCLI[Azure CLI]
AzAPI[Azure APIs]
end
LLM -->|MCP Protocol| Entry
Entry --> Tools
Tools --> Lib
Tools --> Services
Services --> Lib
Lib --> AzCLI
Auth --> AzAPI
Request Flow
sequenceDiagram
participant C as Client
participant M as MCP Server
participant S as Safety
participant E as CLI Executor
participant A as Azure
C->>M: Tool Request
M->>S: Validate Input
alt Unsafe Command
S-->>M: Block + Warning
M-->>C: Error Response
else Safe
S-->>M: Approved
M->>E: Execute Command
E->>A: az CLI call
A-->>E: Response
E-->>M: Result + Parse
M-->>C: Structured Output
end
Plan/Execute Flow
flowchart LR
A[LLM Client] -->|Natural Language| B[MCP Server]
B --> C{execute_now?}
C -->|false| D[Return Plan]
C -->|true| E[Execute CLI]
E --> F{Success?}
F -->|Yes| G[Return Output]
F -->|No| H[Return Error + Analysis]
H -->|Feedback Loop| A
Quick Start
1. Install Dependencies
npm install
2. Configure Environment
cp .env.example .env
# Edit .env with your settings
3. Build & Run
npm run build
npm start
MCP Client Configuration
{
"mcpServers": {
"azure-omni-tool": {
"command": "node",
"args": ["path/to/Azure-mcp/dist/index.js"]
}
}
}
Tools
manage_azure_resources
Plan and execute Azure CLI commands with safety checks.
| Argument | Type | Description |
|---|---|---|
command |
string | Azure CLI command |
explanation |
string | Why this command was chosen |
execute_now |
boolean | false = plan, true = execute |
get_azure_context
Query Azure environment with caching.
| Query Type | Description |
|---|---|
subscriptions |
List accessible subscriptions |
resource_groups |
List resource groups |
resources |
List resources |
custom |
Custom KQL via Resource Graph |
azure_service
Interact with specific Azure services.
| Service | Actions |
|---|---|
storage |
list, listContainers, listBlobs, getContainer, listTables, queryTable |
cosmos |
list, listDatabases, listContainers, query, getContainer |
search |
list, listIndexes, getIndex, query, getService |
kusto |
list, listDatabases, listTables, getSchema, sample, query |
monitor |
list, getWorkspace, listTables, query, listMetrics, getMetrics |
appconfig |
list, getStore, listKeyValues, getKeyValue, setKeyValue, lock, unlock |
keyvault |
list, getVault, listKeys, getKey, createKey, listSecrets, getSecret, listCertificates |
postgres |
list, getServer, listDatabases, listParameters, getParameter, listTables, getTableSchema, query |
Environment Variables
| Variable | Description | Default |
|---|---|---|
AZURE_TENANT_ID |
Azure tenant for scoping | - |
AZURE_SUBSCRIPTION_ID |
Default subscription | - |
OPERATOR_EMAIL |
Email for audit trail | - |
OPERATOR_NAME |
Operator name | - |
LOG_LEVEL |
Logging level | info |
ENABLE_CACHE |
Enable query caching | true |
CACHE_TTL_SECONDS |
Cache duration | 300 |
CACHE_CLEANUP_INTERVAL_MS |
Cache cleanup interval | 60000 |
MAX_RETRIES |
Retry attempts | 3 |
RETRY_DELAY_MS |
Base retry delay | 1000 |
COMMAND_TIMEOUT_MS |
CLI timeout | 120000 |
AZURE_MCP_INCLUDE_PRODUCTION_CREDENTIALS |
Enable Managed Identity | false |
Project Structure
Azure-mcp/
├── src/
│ ├── index.ts # MCP server entry
│ ├── lib/
│ │ ├── auth.ts # Azure credential management
│ │ ├── audit.ts # Audit trail with correlation IDs
│ │ ├── cache.ts # LRU cache with TTL
│ │ ├── cli-executor.ts # Azure CLI wrapper
│ │ ├── config.ts # Environment config
│ │ ├── logger.ts # Structured JSON logging
│ │ ├── retry.ts # Exponential backoff
│ │ ├── safety.ts # Input sanitization
│ │ └── types.ts # Shared types
│ ├── services/
│ │ ├── base-service.ts # Abstract service base
│ │ ├── storage.ts # Azure Storage
│ │ ├── cosmos.ts # Cosmos DB
│ │ ├── search.ts # AI Search
│ │ ├── kusto.ts # Data Explorer
│ │ ├── monitor.ts # Monitor / Log Analytics
│ │ ├── appconfig.ts # App Configuration
│ │ ├── keyvault.ts # Key Vault
│ │ ├── postgres.ts # PostgreSQL Flexible Server
│ │ └── index.ts # Service factory
│ └── tools/
│ ├── azure-manager.ts # Plan/Execute tool
│ ├── context-retriever.ts # Context queries
│ └── service-tool.ts # Service adapter tool
├── .env.example
├── package.json
└── tsconfig.json
Prerequisites
- Node.js >= 18.0.0
- Azure CLI installed and authenticated (
az login)
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。