Azure Omni-Tool MCP Server

Azure Omni-Tool MCP Server

Enables intelligent interaction with Azure resources through natural language by translating requests into safe, auditable Azure CLI commands with plan/review workflows and direct access to 8 Azure services including Storage, Cosmos DB, Key Vault, and more.

Category
访问服务器

README

Azure Omni-Tool MCP Server

A Model Context Protocol (MCP) server in TypeScript that acts as an intelligent bridge between natural language requests and Azure CLI execution.

Features

Plan/Execute Flow - Review commands before execution
Safety Guardrails - Shell injection detection, destructive command warnings
Audit Trail - Operator email tagging for traceability
Retry Logic - Exponential backoff for transient failures
Caching - LRU cache with configurable TTL
Tenant Scoping - Configure tenant/subscription via environment
Azure Service Adapters - Type-safe access to 8 Azure services


Architecture Overview

flowchart TB
    subgraph Client["🖥️ Client Layer"]
        LLM[LLM / AI Agent]
    end

    subgraph MCP["⚙️ MCP Server"]
        direction TB
        Entry[index.ts]
        
        subgraph Tools["Tools"]
            T1[manage_azure_resources]
            T2[get_azure_context]
            T3[azure_service]
        end
        
        subgraph Lib["Core Libraries"]
            Auth[auth.ts]
            Cache[cache.ts]
            CLI[cli-executor.ts]
            Retry[retry.ts]
            Safety[safety.ts]
            Audit[audit.ts]
        end
        
        subgraph Services["Service Adapters"]
            S1[StorageService]
            S2[CosmosService]
            S3[SearchService]
            S4[KustoService]
            S5[MonitorService]
            S6[AppConfigService]
            S7[KeyVaultService]
            S8[PostgresService]
        end
    end

    subgraph Azure["☁️ Azure"]
        AzCLI[Azure CLI]
        AzAPI[Azure APIs]
    end

    LLM -->|MCP Protocol| Entry
    Entry --> Tools
    Tools --> Lib
    Tools --> Services
    Services --> Lib
    Lib --> AzCLI
    Auth --> AzAPI

Request Flow

sequenceDiagram
    participant C as Client
    participant M as MCP Server
    participant S as Safety
    participant E as CLI Executor
    participant A as Azure

    C->>M: Tool Request
    M->>S: Validate Input
    alt Unsafe Command
        S-->>M: Block + Warning
        M-->>C: Error Response
    else Safe
        S-->>M: Approved
        M->>E: Execute Command
        E->>A: az CLI call
        A-->>E: Response
        E-->>M: Result + Parse
        M-->>C: Structured Output
    end

Plan/Execute Flow

flowchart LR
    A[LLM Client] -->|Natural Language| B[MCP Server]
    B --> C{execute_now?}
    C -->|false| D[Return Plan]
    C -->|true| E[Execute CLI]
    E --> F{Success?}
    F -->|Yes| G[Return Output]
    F -->|No| H[Return Error + Analysis]
    H -->|Feedback Loop| A

Quick Start

1. Install Dependencies

npm install

2. Configure Environment

cp .env.example .env
# Edit .env with your settings

3. Build & Run

npm run build
npm start

MCP Client Configuration

{
  "mcpServers": {
    "azure-omni-tool": {
      "command": "node",
      "args": ["path/to/Azure-mcp/dist/index.js"]
    }
  }
}

Tools

manage_azure_resources

Plan and execute Azure CLI commands with safety checks.

Argument Type Description
command string Azure CLI command
explanation string Why this command was chosen
execute_now boolean false = plan, true = execute

get_azure_context

Query Azure environment with caching.

Query Type Description
subscriptions List accessible subscriptions
resource_groups List resource groups
resources List resources
custom Custom KQL via Resource Graph

azure_service

Interact with specific Azure services.

Service Actions
storage list, listContainers, listBlobs, getContainer, listTables, queryTable
cosmos list, listDatabases, listContainers, query, getContainer
search list, listIndexes, getIndex, query, getService
kusto list, listDatabases, listTables, getSchema, sample, query
monitor list, getWorkspace, listTables, query, listMetrics, getMetrics
appconfig list, getStore, listKeyValues, getKeyValue, setKeyValue, lock, unlock
keyvault list, getVault, listKeys, getKey, createKey, listSecrets, getSecret, listCertificates
postgres list, getServer, listDatabases, listParameters, getParameter, listTables, getTableSchema, query

Environment Variables

Variable Description Default
AZURE_TENANT_ID Azure tenant for scoping -
AZURE_SUBSCRIPTION_ID Default subscription -
OPERATOR_EMAIL Email for audit trail -
OPERATOR_NAME Operator name -
LOG_LEVEL Logging level info
ENABLE_CACHE Enable query caching true
CACHE_TTL_SECONDS Cache duration 300
CACHE_CLEANUP_INTERVAL_MS Cache cleanup interval 60000
MAX_RETRIES Retry attempts 3
RETRY_DELAY_MS Base retry delay 1000
COMMAND_TIMEOUT_MS CLI timeout 120000
AZURE_MCP_INCLUDE_PRODUCTION_CREDENTIALS Enable Managed Identity false

Project Structure

Azure-mcp/
├── src/
│   ├── index.ts                 # MCP server entry
│   ├── lib/
│   │   ├── auth.ts              # Azure credential management
│   │   ├── audit.ts             # Audit trail with correlation IDs
│   │   ├── cache.ts             # LRU cache with TTL
│   │   ├── cli-executor.ts      # Azure CLI wrapper
│   │   ├── config.ts            # Environment config
│   │   ├── logger.ts            # Structured JSON logging
│   │   ├── retry.ts             # Exponential backoff
│   │   ├── safety.ts            # Input sanitization
│   │   └── types.ts             # Shared types
│   ├── services/
│   │   ├── base-service.ts      # Abstract service base
│   │   ├── storage.ts           # Azure Storage
│   │   ├── cosmos.ts            # Cosmos DB
│   │   ├── search.ts            # AI Search
│   │   ├── kusto.ts             # Data Explorer
│   │   ├── monitor.ts           # Monitor / Log Analytics
│   │   ├── appconfig.ts         # App Configuration
│   │   ├── keyvault.ts          # Key Vault
│   │   ├── postgres.ts          # PostgreSQL Flexible Server
│   │   └── index.ts             # Service factory
│   └── tools/
│       ├── azure-manager.ts     # Plan/Execute tool
│       ├── context-retriever.ts # Context queries
│       └── service-tool.ts      # Service adapter tool
├── .env.example
├── package.json
└── tsconfig.json

Prerequisites

  • Node.js >= 18.0.0
  • Azure CLI installed and authenticated (az login)

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选