Backend Architect MCP Server
A specialized toolchain that guides AI agents through a structured 'Atomic Development' workflow for building Python FastAPI and Supabase backends. It manages project scaffolding and enforces dependency-ordered generation of database models, API routes, and tests.
README
Backend Architect MCP Server
An expert MCP toolchain designed to act as a Backend Architect for AI agents. This server enforces a strict "Atomic Development" workflow for building Python FastAPI + Supabase backends.
🚀 Overview
The Backend Architect server guides an agent through a Plan -> Prompt -> Write loop, ensuring that database models, API routes, and tests are built in the correct dependency order.
Key Features
- Atomic Development: Focuses on one component at a time.
- Workflow Enforcement: Models → Routes → Tests (respects model dependencies).
- Auto-Imports: Automatically updates
__init__.pyfiles for models and routes. - State Persistence: Maintains
.mcp_state.jsonto track building progress. - Contextual Prompts: Generates specialized system prompts for each component.
🛠️ Tech Stack
- Python 3.12
- MCP SDK (FastMCP)
- UV (Dependency Manager)
- Pydantic (State Validation)
📦 Installation
Ensure you have uv installed. Then, clone the repository and install dependencies:
# Clone the repository
cd mcp_fastapi
# Install dependencies and run the server
uv run server.py
🛠️ Tools Reference
1. Initialization
initialize_project(root_path: str = "."): Scaffolds the FastAPI project structure andpyproject.toml. Defaults to the current working directory.
2. Planning
save_roles_plan(roles: list): Define user roles and permissions.save_database_plan(models: list): Define SQLModel schemas and relationships.save_route_plan(routes: list): Define API endpoints and methods.save_test_plan(tests: list): Define simulation scenarios.
3. Execution
get_next_pending_task(): The "Traffic Cop" that tells you exactly what to build next.get_file_instruction(task_type: str, task_name: str): Returns a strict system prompt for the AI to follow.write_component_file(type: str, name: str, content: str): Writes the code and marks the task as "done".
🔄 The Loop
- Initialize: Set up your project root.
- Plan: Feed the architect your schemas and endpoints.
- Draft: Ask
get_next_pending_task()for the current objective. - Learn: Get instructions via
get_file_instruction(). - Write: Submit code via
write_component_file(). - Repeat: Until the entire backend is architected.
⚙️ MCP Configuration
Add this to your MCP settings file (e.g., mcp_config.json or your IDE's MCP settings):
{
"mcpServers": {
"backend-architect": {
"command": "uv",
"args": [
"run",
"--project",
"/path/to/server/directory",
"python",
"server.py"
]
}
}
}
[!TIP] Use the absolute path to the directory where you cloned this repository for the
--projectargument. This ensures the server can find its dependencies regardless of where your AI agent is currently working.
Built with ❤️ for the AI-First Developer.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。