Backlog MCP Server
A Model Context Protocol server that enables AI agents to interact with Backlog API for managing projects, issues, wikis, Git repositories, and other Backlog features.
README
<<<<<<< HEAD
Backlog MCP Server
A Model Context Protocol (MCP) server for interacting with the Backlog API. This server provides tools for managing projects, issues, wiki pages, and more in Backlog through AI agents like Claude Desktop / Cline / Cursor etc.
Features
- Project tools (create, read, update, delete)
- Issue tracking and comments (create, update, delete, list)
- Wiki page support
- Git repository and pull request tools
- Notification tools
- GraphQL-style field selection for optimized responses
- Token limiting for large responses
Getting Started
Requirements
- Docker
- A Backlog account with API access
- API key from your Backlog account
Option 1: Install via Docker
The easiest way to use this MCP server is through MCP configurations:
- Open MCP settings
- Navigate to the MCP configuration section
- Add the following configuration:
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"--pull", "always",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key"
}
}
}
}
Replace your-domain.backlog.com with your Backlog domain and your-api-key with your Backlog API key.
✅ If you cannot use --pull always, you can manually update the image using:
docker pull ghcr.io/nulab/backlog-mcp-server:latest
Option 2: Manual Setup (Node.js)
-
Clone and install:
git clone https://github.com/nulab/backlog-mcp-server.git cd backlog-mcp-server npm install npm run build -
Set your json to use as MCP
{
"mcpServers": {
"backlog": {
"command": "node",
"args": [
"your-repository-location/build/index.js"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key"
}
}
}
}
Tool Configuration
You can selectively enable or disable specific toolsets using the --enable-toolsets command-line flag or the ENABLE_TOOLSETS environment variable. This allows better control over which tools are available to the AI agent and helps reduce context size.
Available Toolsets
The following toolsets are available (enabled by default when "all" is used):
| Toolset | Description |
|---|---|
space |
Tools for managing Backlog space settings and general information |
project |
Tools for managing projects, categories, custom fields, and issue types |
issue |
Tools for managing issues and their comments |
wiki |
Tools for managing wiki pages |
git |
Tools for managing Git repositories and pull requests |
notifications |
Tools for managing user notifications |
Specifying Toolsets
You can control toolset activation in the following ways:
Using via CLI:
--enable-toolsets space,project,issue
Or via environment variable:
ENABLE_TOOLSETS="space,project,issue"
If all is specified, all available toolsets will be enabled. This is also the default behavior.
Using selective toolsets can be helpful if the toolset list is too large for your AI agent or if certain tools are causing performance issues. In such cases, disabling unused toolsets may improve stability.
🧩 Tip:
projecttoolset is highly recommended, as many other tools rely on project data as an entry point.
Dynamic Toolset Discovery (Experimental)
If you're using the MCP server with AI agents, you can enable dynamic discovery of toolsets at runtime:
Enabling via CLI:
--dynamic-toolsets
Or via environment variable::
-e DYNAMIC_TOOLSETS=1 \
With dynamic toolsets enabled, the LLM will be able to list and activate toolsets on demand via tool interface.
Available Tools
Toolset: space
Tools for managing Backlog space settings and general information.
get_space: Returns information about the Backlog space.get_users: Returns list of users in the Backlog space.get_myself: Returns information about the authenticated user.
Toolset: project
Tools for managing projects, categories, custom fields, and issue types.
get_project_list: Returns list of projects.add_project: Creates a new project.get_project: Returns information about a specific project.update_project: Updates an existing project.delete_project: Deletes a project.
Toolset: issue
Tools for managing issues, their comments, and related items like priorities, categories, custom fields, issue types, resolutions, and watching lists.
get_issue: Returns information about a specific issue.get_issues: Returns list of issues.count_issues: Returns count of issues.add_issue: Creates a new issue in the specified project.update_issue: Updates an existing issue.delete_issue: Deletes an issue.get_issue_comments: Returns list of comments for an issue.add_issue_comment: Adds a comment to an issue.get_priorities: Returns list of priorities.get_categories: Returns list of categories for a project.get_custom_fields: Returns list of custom fields for a project.get_issue_types: Returns list of issue types for a project.get_resolutions: Returns list of issue resolutions.get_watching_list_items: Returns list of watching items for a user.get_watching_list_count: Returns count of watching items for a user.
Toolset: wiki
Tools for managing wiki pages.
get_wiki_pages: Returns list of Wiki pages.get_wikis_count: Returns count of wiki pages in a project.get_wiki: Returns information about a specific wiki page.add_wiki: Creates a new wiki page.
Toolset: git
Tools for managing Git repositories and pull requests.
get_git_repositories: Returns list of Git repositories for a project.get_git_repository: Returns information about a specific Git repository.get_pull_requests: Returns list of pull requests for a repository.get_pull_requests_count: Returns count of pull requests for a repository.get_pull_request: Returns information about a specific pull request.add_pull_request: Creates a new pull request.update_pull_request: Updates an existing pull request.get_pull_request_comments: Returns list of comments for a pull request.add_pull_request_comment: Adds a comment to a pull request.update_pull_request_comment: Updates a comment on a pull request.
Toolset: notifications
Tools for managing user notifications.
get_notifications: Returns list of notifications.get_notifications_count: Returns count of notifications.reset_unread_notification_count: Resets unread notification count.mark_notification_as_read: Marks a notification as read.
Usage Examples
Once the MCP server is configured in AI agents, you can use the tools directly in your conversations. Here are some examples:
- Listing Projects
Could you list all my Backlog projects?
- Creating a New Issue
Create a new bug issue in the PROJECT-KEY project with high priority titled "Fix login page error"
- Getting Project Details
Show me the details of the PROJECT-KEY project
- Working with Git Repositories
List all Git repositories in the PROJECT-KEY project
- Managing Pull Requests
Show me all open pull requests in the repository "repo-name" of PROJECT-KEY project
Create a new pull request from branch "feature/new-feature" to "main" in the repository "repo-name" of PROJECT-KEY project
- Watching Items
Show me all items I'm watching
i18n / Overriding Descriptions
You can override the descriptions of tools by creating a .backlog-mcp-serverrc.json file in your home directory.
The file should contain a JSON object with the tool names as keys and the new descriptions as values.
For example:
{
"TOOL_ADD_ISSUE_COMMENT_DESCRIPTION": "An alternative description",
"TOOL_CREATE_PROJECT_DESCRIPTION": "Create a new project in Backlog"
}
When the server starts, it determines the final description for each tool based on the following priority:
- Environment variables (e.g.,
BACKLOG_MCP_TOOL_ADD_ISSUE_COMMENT_DESCRIPTION) - Entries in
.backlog-mcp-serverrc.json- Supported configuration file formats: .json, .yaml, .yml - Built-in fallback values (English)
Sample config:
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"-v", "/yourcurrentdir/.backlog-mcp-serverrc.json:/root/.backlog-mcp-serverrc.json:ro",
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key"
}
}
}
}
Exporting Current Translations
You can export the current default translations (including any overrides) by running the binary with the --export-translations flag.
This will print all tool descriptions to stdout, including any customizations you have made.
Example:
docker run -i --rm ghcr.io/nulab/backlog-mcp-server node build/index.js --export-translations
or
npx github:nulab/backlog-mcp-server --export-translations
Using a Japanese Translation Template
A sample Japanese configuration file is provided at:
translationConfig/.backlog-mcp-serverrc.json.example
To use it, copy it to your home directory as .backlog-mcp-serverrc.json:
You can then edit the file to customize the descriptions as needed.
Using Environment Variables
Alternatively, you can override tool descriptions via environment variables.
The environment variable names are based on the tool keys, prefixed with BACKLOG_MCP_ and written in uppercase.
Example: To override the TOOL_ADD_ISSUE_COMMENT_DESCRIPTION:
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"-e", "BACKLOG_MCP_TOOL_ADD_ISSUE_COMMENT_DESCRIPTION"
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key",
"BACKLOG_MCP_TOOL_ADD_ISSUE_COMMENT_DESCRIPTION": "An alternative description"
}
}
}
}
The server loads the config file synchronously at startup.
Environment variables always take precedence over the config file.
Advanced Features
Tool Name Prefixing
Add prefix to tool names with:
--prefix backlog_
or via environment variable:
PREFIX="backlog_"
This is especially useful if you're using multiple MCP servers or tools in the same environment and want to avoid name collisions. For example, get_project can become backlog_get_project to distinguish it from similarly named tools provided by other services.
Response Optimization & Token Limits
Field Selection (GraphQL-style)
--optimize-response
Or environment variable:
OPTIMIZE_RESPONSE=1
Then, request only specific fields:
get_project(projectIdOrKey: "PROJECT-KEY", fields: "{ name key description }")
The AI will use field selection to optimize the response:
get_project(projectIdOrKey: "PROJECT-KEY", fields: "{ name key description }")
Benefits:
- Reduce response size by requesting only needed fields
- Focus on specific data points
- Improve performance for large responses
Token Limiting
Large responses are automatically limited to prevent exceeding token limits:
- Default limit: 50,000 tokens
- Configurable via
MAX_TOKENSenvironment variable - Responses exceeding the limit are truncated with a message
You can change this using:
MAX_TOKENS=10000
If a response exceeds the limit, it will be truncated with a warning.
Note: This is a best-effort mitigation, not a guaranteed enforcement.
Full Custom Configuration Example
This section demonstrates advanced configuration using multiple environment variables. These are experimental features and may not be supported across all MCP clients. This is not part of the MCP standard specification and should be used with caution.
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"-e", "MAX_TOKENS",
"-e", "OPTIMIZE_RESPONSE",
"-e", "PREFIX",
"-e", "ENABLE_TOOLSETS",
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key",
"MAX_TOKENS": "10000",
"OPTIMIZE_RESPONSE": "1",
"PREFIX": "backlog_",
"ENABLE_TOOLSETS": "space,project,issue",
"ENABLE_DYNAMIC_TOOLSETS": "1"
}
}
}
}
Development
Running Tests
npm test
Adding New Tools
- Create a new file in
src/tools/following the pattern of existing tools - Create a corresponding test file
- Add the new tool to
src/tools/tools.ts - Build and test your changes
Command Line Options
The server supports several command line options:
--export-translations: Export all translation keys and values--optimize-response: Enable GraphQL-style field selection--max-tokens=NUMBER: Set maximum token limit for responses--prefix=STRING: Optional string prefix to prepend to all tool names (default: "")--enable-toolsets <toolsets...>: Specify which toolsets to enable (comma-separated or multiple arguments). Defaults to "all". Example:--enable-toolsets space,projector--enable-toolsets issue --enable-toolsets gitAvailable toolsets:space,project,issue,wiki,git,notifications.
Example:
node build/index.js --optimize-response --max-tokens=100000 --prefix="backlog_" --enable-toolsets space,issue
License
This project is licensed under the MIT License.
Please note: This tool is provided under the MIT License without any warranty or official support.
Use it at your own risk after reviewing the contents and determining its suitability for your needs.
If you encounter any issues, please report them via GitHub Issues.
http-backlog-mcp-server
Backlog MCP server using HTTP
c8c3a34f98c2046b23c059de94807ae5e64cdefc
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。