Bakery Data MCP Server

Bakery Data MCP Server

Provides access to bakery POS transaction data, product catalogs, and sales analytics from SQLite database through natural language queries and custom SQL execution.

Category
访问服务器

README

Bakery Data MCP Server

An MCP (Model Context Protocol) server that provides access to bakery POS (Point of Sale) data stored in SQLite. This server enables Claude and other MCP clients to query transaction data, product information, and generate sales analytics.

Overview

This project imports bakery sales data from CSV files into a SQLite database and exposes it through an MCP server with powerful querying capabilities.

Data Sources

  • POS Transaction Journal (pos_journal_2023_2024.csv): Sales transactions from 2023-2024
  • Product Master (商品マスタ.csv): Product catalog with pricing and cost data
  • Product Master Extended (商品マスタ_タグ拡張版.csv): Product catalog with category tags
  • Department Master (部門マスタ.csv): Department/category definitions

Setup

1. Install Dependencies

pip install mcp

Or install in development mode:

pip install -e .

2. Import Data into SQLite

Run the import script to create the database and load CSV data:

python import_data.py

This will:

  • Create bakery_data.db SQLite database
  • Import all CSV files from the Data directory
  • Create indexes for better query performance
  • Display database statistics

3. Configure MCP Server

Add the server to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "bakery-data": {
      "command": "python",
      "args": [
        "-m",
        "bakery_data_mcp.server"
      ],
      "cwd": "/absolute/path/to/bakery_data_mcp"
    }
  }
}

Replace /absolute/path/to/bakery_data_mcp with the actual path to this project directory.

4. Restart Claude Desktop

Restart Claude Desktop to load the new MCP server configuration.

Available Tools

The MCP server provides the following tools:

1. query_transactions

Query POS transaction data with various filters.

Parameters:

  • start_date (optional): Start date (YYYY-MM-DD)
  • end_date (optional): End date (YYYY-MM-DD)
  • product_code (optional): Filter by product code
  • product_name (optional): Search product name (partial match)
  • payment_method (optional): Filter by payment method
  • min_amount / max_amount (optional): Amount range filter
  • limit (optional): Max results (default: 100)

2. query_products

Query product master data.

Parameters:

  • plu_code (optional): Product PLU code
  • product_name (optional): Search product name (partial match)
  • department_id (optional): Filter by department
  • min_price / max_price (optional): Price range filter
  • tag (optional): Filter by product tag
  • include_tags (optional): Include tag data in results
  • limit (optional): Max results (default: 100)

3. query_departments

Query department master data.

Parameters:

  • department_id (optional): Department ID
  • department_name (optional): Search department name (partial match)

4. sales_summary

Get aggregated sales statistics.

Parameters:

  • start_date / end_date (optional): Date range
  • group_by (optional): Group by product, department, payment_method, date, or month
  • department_id (optional): Filter by department
  • limit (optional): Max results (default: 100)

5. top_products

Get top selling products.

Parameters:

  • start_date / end_date (optional): Date range
  • department_id (optional): Filter by department
  • metric (optional): Rank by quantity or revenue (default: revenue)
  • limit (optional): Number of top products (default: 10)

6. execute_sql

Execute custom SQL queries on the database.

Parameters:

  • query: SQL query to execute
  • params (optional): Query parameters for parameterized queries

⚠️ Use with caution: This allows arbitrary SQL execution. Use read-only queries when possible.

7. get_schema

Get database schema information including table structures and row counts.

Example Usage

Once configured, you can ask Claude questions like:

  • "What were the top 10 selling products in January 2024?"
  • "Show me all transactions paid with credit card over ¥1000"
  • "What's the total revenue by department for 2023?"
  • "Find all products tagged with '朝食向け' (breakfast)"
  • "What are the sales trends by month?"

Database Schema

Tables

  • departments: Department master data

    • department_id (PRIMARY KEY)
    • department_name
  • products: Product master data

    • plu_code (PRIMARY KEY)
    • department_id (FOREIGN KEY)
    • product_name
    • price
    • cost
    • cost_rate
  • products_extended: Product master with tags

    • Same as products plus:
    • tags (JSON array as text)
  • transactions: POS transaction journal

    • id (PRIMARY KEY, auto-increment)
    • transaction_number
    • datetime
    • product_code
    • product_name
    • unit_price
    • quantity
    • amount
    • payment_method

Development

Project Structure

bakery_data_mcp/
├── Data/                          # CSV data files
├── src/
│   └── bakery_data_mcp/
│       ├── __init__.py
│       └── server.py              # MCP server implementation
├── schema.sql                     # Database schema
├── import_data.py                 # Data import script
├── pyproject.toml                 # Project configuration
├── bakery_data.db                 # SQLite database (generated)
└── README.md

Running the Server

For testing, you can run the server directly:

python -m bakery_data_mcp.server

The server communicates via stdio and expects MCP protocol messages.

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选