Banking Model Context Protocol Server

Banking Model Context Protocol Server

Implements a secure message communication protocol for handling exchanges between the banking chatbot and Azure OpenAI, providing message queuing, reliability, and detailed logging.

Category
访问服务器

README

Banking Chatbot with MCP Integration

A sophisticated banking chatbot application that uses Azure OpenAI and Model Context Protocol (MCP) for secure and efficient message handling.

Features

  • AI-Powered Banking Assistant: Uses Azure OpenAI to provide intelligent responses to banking queries
  • Model Context Protocol (MCP): Implements a secure message communication protocol
  • Real-time Chat Interface: Modern, responsive UI for seamless user interaction
  • Comprehensive Logging: Detailed logging system for monitoring and debugging
  • Bank Information Integration: Dynamic display of bank details and services
  • Markdown Support: Rich text formatting for responses

Project Structure

.
├── app.py                  # Main Flask application
├── mcp_server.py          # MCP server implementation
├── mcp_client.py          # MCP client implementation
├── requirements.txt       # Python dependencies
├── .env                   # Environment variables
├── templates/             # HTML templates
│   └── index.html        # Chat interface
└── logs/                 # Log files
    ├── client_messages.log
    ├── mcp_client.log
    └── mcp_server.log

Prerequisites

  • Python 3.8 or higher
  • Azure OpenAI API access
  • Required Python packages (see requirements.txt)

Installation

  1. Clone the repository:

    git clone <repository-url>
    cd banking-chatbot
    
  2. Create and activate a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    
  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Create a .env file with your credentials:

    ENDPOINT_URL=your_azure_endpoint
    AZURE_OPENAI_API_KEY=your_api_key
    DEPLOYMENT_NAME=your_deployment_name
    

Usage

  1. Start the MCP server:

    python mcp_server.py
    
  2. In a new terminal, start the Flask application:

    python app.py
    
  3. Access the chatbot interface at http://localhost:5000

MCP Protocol

The Model Context Protocol (MCP) is implemented to handle message communication between the chatbot and the server. It provides:

  • Secure message transmission
  • Message queuing and reliability
  • Detailed logging
  • Real-time message handling

Message Types

  • Chat Messages: User queries and AI responses
  • System Messages: Administrative and control messages

Logging

The application maintains detailed logs in the logs directory:

  • client_messages.log: Chat message history
  • mcp_client.log: Client connection and operation logs
  • mcp_server.log: Server operation logs

Bank Information

The chatbot is configured with comprehensive bank information including:

  • Business hours
  • Branch locations
  • Available services
  • Contact information
  • Support channels

Development

Adding New Features

  1. Update the BANK_INFO dictionary in app.py for new bank information
  2. Modify the SYSTEM_MESSAGE for updated AI behavior
  3. Add new message handlers in mcp_client.py for additional functionality

Testing

Run the test client to verify MCP functionality:

python test_client.py

Clear logs for testing:

python clear_logs.py

Security

  • API keys and sensitive information are stored in .env
  • MCP provides secure message transmission
  • Input validation and error handling are implemented

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选