Barebones MCP Server
A minimal, dockerized template for creating HTTP-based Model Context Protocol servers. Provides a starting point with FastMCP framework integration and includes a sample cat fact tool that can be replaced with custom functionality.
README
Barebones MCP Server
A minimal, dockerized template for creating HTTP-based Model Context Protocol (MCP) servers. This template provides a starting point for building your own MCP tools and services.
Features
- HTTP Transport: Ready-to-use HTTP MCP server setup
- Docker Support: Containerized deployment with Python 3.13
- FastMCP Framework: Built using the FastMCP library for easy MCP server development
- Template Structure: Clean, minimal codebase to build upon
What's Included
This template includes a simple get_cat_fact() tool as an example - replace it with your own tools and functionality.
Quick Start
-
Build and run the Docker container:
docker build -t mcp-server . docker run -p 8000:8000 mcp-server -
Connect in VS Code:
- Click the "Start" button on the
.vscode/mcp.jsonfile that appears in VS Code - The MCP server will be automatically configured and connected
- Click the "Start" button on the
-
Access your tools:
- Open the Chat panel in VS Code
- Click the wrench icon (🔧) to see available MCP tools
- Your
get_cat_fact()tool should appear and be ready to use - Test with prompts like:
- "Do you see a cat fact mcp tool?"
- "Get me a cat fact"
- Note: The AI agent should prompt you that it will use an MCP tool before executing it. If you don't see this prompt, the tool isn't being used.
MCP Configuration
Add this to your .vscode/mcp.json file:
{
"servers": {
"my-mcp-tools": {
"url": "http://localhost:8000/mcp"
}
}
}
Available Tools (Example)
get_cat_fact(): Example tool that returns a random cat fact - replace with your own tools
Debugging with MCP Inspector
For debugging and testing your MCP server, you can use the MCP Inspector:
-
Install and run MCP Inspector:
npx @modelcontextprotocol/inspector -
Configure the connection:
- Set transport type to:
httpstreamable - Set URL to:
http://localhost:8000/mcp
- Set transport type to:
-
Test your tools:
- The inspector will show all available tools and their schemas
- You can test each tool directly from the web interface
- View server capabilities and debug any issues
Customizing the Template
- Replace the example tool in
server.pywith your own MCP tools - Update dependencies in
requirements.txtas needed - Modify the server name in the FastMCP constructor
- Add your tool logic using the
@mcp.tool()decorator
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。