Bayesian MCP

Bayesian MCP

A Model Calling Protocol server that enables LLMs to perform rigorous Bayesian analysis and probabilistic reasoning, including inference, model comparison, and predictive modeling with uncertainty quantification.

Category
访问服务器

README

Bayesian MCP

A Model Calling Protocol (MCP) server for Bayesian reasoning, inference, and belief updating. This tool enables LLMs to perform rigorous Bayesian analysis and probabilistic reasoning.

Features

  • 🧠 Bayesian Inference: Update beliefs with new evidence using MCMC sampling
  • 📊 Model Comparison: Compare competing models using information criteria
  • 🔮 Predictive Inference: Generate predictions with uncertainty quantification
  • 📈 Visualization: Create visualizations of posterior distributions
  • 🔌 MCP Integration: Seamlessly integrate with any LLM that supports MCP

Installation

Development Installation

Clone the repository and install dependencies:

git clone https://github.com/wrenchchatrepo/bayesian-mcp.git
cd bayesian-mcp
pip install -e .

Requirements

  • Python 3.9+
  • PyMC 5.0+
  • ArviZ
  • NumPy
  • Matplotlib
  • FastAPI
  • Uvicorn

Quick Start

Starting the Server

# Run with default settings
python bayesian_mcp.py

# Specify host and port
python bayesian_mcp.py --host 0.0.0.0 --port 8080

# Set log level
python bayesian_mcp.py --log-level debug

The server will start and listen for MCP requests on the specified host and port.

API Usage

The Bayesian MCP server exposes several functions through its API:

1. Create Model

Create a new Bayesian model with specified variables.

# MCP Request
{
    "function_name": "create_model",
    "parameters": {
        "model_name": "my_model",
        "variables": {
            "theta": {
                "distribution": "normal",
                "params": {"mu": 0, "sigma": 1}
            },
            "likelihood": {
                "distribution": "normal",
                "params": {"mu": "theta", "sigma": 0.5},
                "observed": [0.1, 0.2, 0.3, 0.4]
            }
        }
    }
}

2. Update Beliefs

Update model beliefs with new evidence.

# MCP Request
{
    "function_name": "update_beliefs",
    "parameters": {
        "model_name": "my_model",
        "evidence": {
            "data": [0.1, 0.2, 0.3, 0.4]
        },
        "sample_kwargs": {
            "draws": 1000,
            "tune": 1000,
            "chains": 2
        }
    }
}

3. Make Predictions

Generate predictions using the posterior distribution.

# MCP Request
{
    "function_name": "predict",
    "parameters": {
        "model_name": "my_model",
        "variables": ["theta"],
        "conditions": {
            "x": [1.0, 2.0, 3.0]
        }
    }
}

4. Compare Models

Compare multiple models using information criteria.

# MCP Request
{
    "function_name": "compare_models",
    "parameters": {
        "model_names": ["model_1", "model_2"],
        "metric": "waic"
    }
}

5. Create Visualization

Generate visualizations of model posterior distributions.

# MCP Request
{
    "function_name": "create_visualization",
    "parameters": {
        "model_name": "my_model",
        "plot_type": "trace",
        "variables": ["theta"]
    }
}

Examples

The examples/ directory contains several examples demonstrating how to use the Bayesian MCP server:

Linear Regression

A simple linear regression example to demonstrate parameter estimation:

python examples/linear_regression.py

A/B Testing

An example of Bayesian A/B testing for conversion rates:

python examples/ab_test.py

Supported Distributions

The Bayesian engine supports the following distributions:

  • normal: Normal (Gaussian) distribution
  • lognormal: Log-normal distribution
  • beta: Beta distribution
  • gamma: Gamma distribution
  • exponential: Exponential distribution
  • uniform: Uniform distribution
  • bernoulli: Bernoulli distribution
  • binomial: Binomial distribution
  • poisson: Poisson distribution
  • deterministic: Deterministic transformation

MCP Integration

This server implements the Model Calling Protocol, making it compatible with a wide range of LLMs and frameworks. To use it with your LLM:

import requests

response = requests.post("http://localhost:8000/mcp", json={
    "function_name": "create_model",
    "parameters": {
        "model_name": "example_model",
        "variables": {...}
    }
})

result = response.json()

License

MIT

Credits

Based on concepts and code from the Wrench AI framework.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选