Best Practices MCP Server
Provides Python and FastAPI coding best practices with searchable guidelines, code review capabilities, and actionable improvement suggestions with examples across general coding, performance, and code quality categories.
README
Best Practices MCP Server
A Model Context Protocol (MCP) server that provides Python coding best practices and guidelines for general coding and API development using FastAPI.
Features
- Search Best Practices: Search by keyword across all categories
- Category Browsing: Explore practices by category (general_coding, fastapi_specific, performance, code_quality)
- Code Examples: Get practical code examples for specific topics
- Code Review: Analyze code against best practices with specific recommendations
- Improvement Suggestions: Get prioritized, actionable improvements with before/after examples
- MCP Resources: Access best practices via URI (e.g.,
bestpractices://fastapi/async_operations) - Pre-built Prompts: Quick access to common tasks like code review and examples
Installation
pip install -r requirements.txt
Configuration
The server supports the following environment variables:
BEST_PRACTICES_FILE: Path to the best practices JSON file (default:data/python_best_practices.json)LOG_LEVEL: Logging level (default:INFO)
Example:
export BEST_PRACTICES_FILE=/path/to/custom_practices.json
export LOG_LEVEL=DEBUG
Running the Server
python bestpractices_mcp_server.py
Usage with Kiro IDE
- Add the server to your MCP configuration (
.kiro/settings/mcp.json):
{
"mcpServers": {
"bestpractices": {
"command": "python",
"args": ["/path/to/bestpractices_mcp_server.py"],
"env": {
"BEST_PRACTICES_FILE": "data/python_best_practices.json"
}
}
}
}
-
Restart Kiro IDE or reconnect the MCP server
-
Use the tools in your AI assistant conversations
Available Tools
search_best_practices
Search for best practices by keyword.
search_best_practices(keyword="async")
get_practice_by_category
Get practices for a specific category or topic.
get_practice_by_category(category="fastapi_specific", topic="pydantic_models")
list_categories
List all available categories.
list_categories()
get_examples_tool
Get code examples for a specific topic.
get_examples_tool(topic="type_hints")
review_code
Review code against best practices.
review_code(code="def test(): pass", context="general")
suggest_improvements
Get improvement suggestions for code.
suggest_improvements(code="def test(): pass", focus_area="type_hints")
Available Resources
Access best practices directly via URI:
bestpractices://general/{topic}- General Python practicesbestpractices://fastapi/{topic}- FastAPI-specific practicesbestpractices://performance/{topic}- Performance optimizationbestpractices://code_quality/{topic}- Code quality practicesbestpractices://all- Complete guide
Available Prompts
review_python_code- Comprehensive Python code reviewreview_fastapi_endpoint- FastAPI-specific code reviewsuggest_code_improvements- Get improvement suggestionsshow_examples- Retrieve examples for a topic
Best Practices Database
The server reads from data/python_best_practices.json which contains:
- general_coding: Naming conventions, type hints, error handling, documentation, code organization
- fastapi_specific: Routes, Pydantic models, dependency injection, async operations, middleware, security
- performance: Caching, database optimization
- code_quality: Linting, logging
The database is read dynamically on each request, so updates are reflected immediately without restarting the server.
Examples
The examples/ directory contains usage examples demonstrating the server's functionality:
- search_example.py - Search for best practices by keyword
- code_review_example.py - Review code against best practices
- resource_access_example.py - Access practices via categories and topics
Run examples:
python examples/search_example.py
python examples/code_review_example.py
python examples/resource_access_example.py
See examples/README.md for detailed documentation.
Development
Running Tests
pytest test_data_manager.py -v
Adding New Best Practices
Edit data/python_best_practices.json and add your practices following the structure:
{
"python_best_practices": {
"category_name": {
"topic_name": {
"description": "Description of the practice",
"examples": {
"example_name": "code example"
}
}
}
}
}
Troubleshooting
Server won't start
- Check that
data/python_best_practices.jsonexists - Verify the JSON file is valid
- Check file permissions
No results from search
- Verify the keyword exists in the database
- Try broader search terms
- Use
list_categories()to see available topics
Tools not appearing in Kiro
- Verify MCP configuration is correct
- Restart Kiro IDE
- Check server logs for errors
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。