Bi-Temporal Knowledge Graph MCP Server

Bi-Temporal Knowledge Graph MCP Server

Gives AI agents persistent memory with bi-temporal tracking, automatically extracting entities from natural language and enabling time-travel queries to understand facts as they existed at any point in history.

Category
访问服务器

README

Bi-Temporal Knowledge Graph MCP Server

A production-ready MCP (Model Context Protocol) server that gives your AI agents persistent memory with full temporal tracking. Save facts, extract entities using AI, and query historical data with time-travel capabilities.

Build intelligent AI agents with persistent memory that understands time and context

Architecture

This server uses a single-file "Database-Blind" architecture:

  • main.py - Everything in one file: FalkorDB driver, session management, entity extraction, memory tools, and your custom automation tools

Structure:

  1. Configuration & Database Driver
  2. Session Store & Entity Extractor
  3. Graphiti Memory Core
  4. Core MCP Memory Tools
  5. CUSTOM AUTOMATION TOOLS section (add your webhook tools here!)
  6. Server Startup

Note: This server focuses solely on memory operations. For advanced workflow orchestration, see the optional Automation Engine OS section.


⭐ Star This Repo

If you find this project useful, please give it a star! It helps others discover the project and motivates continued development.

How to star this repo


🔗 Links

Resources


📑 Table of Contents


✨ Features

🧠 Bi-Temporal Knowledge Graph

  • Smart Memory: Automatically tracks when facts were created AND when they became true in reality
  • Conflict Resolution: When you move locations or change jobs, old facts are automatically invalidated
  • Time Travel Queries: Ask "Where did John live in March 2024?" and get accurate historical answers
  • Session Tracking: Maintains context across conversations with automatic cleanup

🤖 AI-Powered Entity Extraction

  • Natural Language Understanding: Just tell it in plain English - "Alice moved to San Francisco and started working at Google"
  • Automatic Relationship Discovery: AI extracts entities and relationships without manual input
  • OpenAI Integration: Uses GPT-4 for intelligent entity extraction
  • Graceful Degradation: Works without AI - just add facts manually

🛠️ Simple Tool Extension

  • Single-File Architecture: Everything in one main.py file for easy customization
  • Direct @mcp.tool() Pattern: Add tools with a simple decorator - no config files needed
  • Single & Multi-Webhook: Execute one webhook or fire multiple in parallel
  • Clear Custom Section: Marked section in main.py shows exactly where to add your tools

🚀 Production Ready

  • Docker Support: Complete docker-compose setup included
  • Replit Optimized: Built specifically for Replit Autoscale environments
  • Resource Management: Automatic session cleanup and connection pooling
  • Health Checks: Built-in monitoring and status endpoints
  • 100% Privacy-Friendly: Your data stays in your database

🎬 How It Works

┌─────────────────────────────────────────────────────────┐
│  1. Natural Language Input                              │
│  "Bob moved to NYC and joined Google as a PM"          │
└────────────────┬────────────────────────────────────────┘
                 │
                 ▼
┌─────────────────────────────────────────────────────────┐
│  2. AI Entity Extraction (OpenAI)                       │
│  • Bob -> lives in -> NYC                               │
│  • Bob -> works at -> Google                            │
│  • Bob -> has role -> PM                                │
└────────────────┬────────────────────────────────────────┘
                 │
                 ▼
┌─────────────────────────────────────────────────────────┐
│  3. Bi-Temporal Storage (FalkorDB)                      │
│  • Fact: Bob works at Google                            │
│  • created_at: 2024-12-19T10:00:00Z                     │
│  • valid_at: 2024-12-19T10:00:00Z                       │
│  • invalid_at: null (still true)                        │
└────────────────┬────────────────────────────────────────┘
                 │
                 ▼
┌─────────────────────────────────────────────────────────┐
│  4. Query Anytime                                       │
│  • "Where does Bob work now?" → Google                  │
│  • "What was Bob's job history?" → All past jobs        │
│  • "Where did Bob live in 2023?" → Historical data      │
└─────────────────────────────────────────────────────────┘

📸 Screenshots

Memory in Action

Knowledge Graph Example

AI Entity Extraction

Entity Extraction Demo

Dynamic Tool Generation

Tool Generator Interface

Temporal Queries

Time-Travel Query Results


🎥 Video Tutorial

Watch the complete setup and usage guide:

Bi-Temporal MCP Server Tutorial

Topics covered:

  • Installation & setup (0:00)
  • Adding your first facts (2:30)
  • Using AI entity extraction (5:15)
  • Creating automation tools (8:45)
  • Temporal queries (12:20)
  • Deployment to production (15:00)

🚀 Quick Start

Option 1: Docker Compose (Recommended)

# 1. Download and extract
wget https://github.com/YOUR_USERNAME/bitemporal-mcp-server/archive/main.zip
unzip main.zip
cd bitemporal-mcp-server-main

# 2. Configure
echo "OPENAI_API_KEY=sk-your-key" > .env

# 3. Start everything (FalkorDB + MCP Server)
docker-compose up -d

# 4. Verify it's running
curl http://localhost:8080/health

That's it! 🎉 Your server is now running at http://localhost:8080/sse

Option 2: Python (Local Development)

# 1. Install dependencies
pip install -r requirements.txt

# 2. Configure
cp .env.example .env
# Edit .env with your settings

# 3. Start FalkorDB (Docker)
docker run -d -p 6379:6379 falkordb/falkordb:latest

# 4. Run the server
python main.py

Option 3: One-Click Deploy

Deploy to Replit


🛠️ Adding Custom Automation Tools

Add your custom automation tools directly in main.py in the CUSTOM AUTOMATION TOOLS section.

Step 1: Find the Custom Tools Section

Open main.py and scroll to around line 800 - look for this clearly marked section:

# =============================================================================
#
#     ██████╗ ██╗   ██╗ ███████╗ ████████╗  ██████╗  ███╗   ███╗
#    ██╔════╝ ██║   ██║ ██╔════╝ ╚══██╔══╝ ██╔═══██╗ ████╗ ████║
#    ██║      ██║   ██║ ███████╗    ██║    ██║   ██║ ██╔████╔██║
#    ██║      ██║   ██║ ╚════██║    ██║    ██║   ██║ ██║╚██╔╝██║
#    ╚██████╗ ╚██████╔╝ ███████║    ██║    ╚██████╔╝ ██║ ╚═╝ ██║
#     ╚═════╝  ╚═════╝  ╚══════╝    ╚═╝     ╚═════╝  ╚═╝     ╚═╝
#
#                   AUTOMATION TOOLS
#
#    ADD YOUR CUSTOM AUTOMATION TOOLS BELOW
#
# =============================================================================

This is where you'll add your webhook tools using the @mcp.tool() decorator.

Step 2: Add Your Tool

Add a decorated async function with @mcp.tool():

@mcp.tool()
async def send_slack_notification(message: str, channel: str = "#general") -> str:
    """Send a notification to Slack."""
    import httpx
    payload = {"text": message, "channel": channel}
    url = "https://hooks.slack.com/services/YOUR/WEBHOOK/URL"
    async with httpx.AsyncClient() as client:
        try:
            resp = await client.post(url, json=payload)
            return f"Success: Slack notification sent ({resp.status_code})"
        except Exception as e:
            return f"Error: {str(e)}"

The function's docstring becomes the tool description that the AI sees.

Step 3: Restart the Server

Restart the MCP server to load your new tools.

Example: LinkedIn Poster Tools

The Automation Engine App generates tools like this:

@mcp.tool()
async def linkedin_post_image(caption: str, imageurl: str) -> str:
    """Posts an image with a caption to your LinkedIn page."""
    import httpx
    payload = {"caption": caption, "imageUrl": imageurl}
    url = "https://webhook.latenode.com/YOUR/WEBHOOK/URL"
    async with httpx.AsyncClient() as client:
        try:
            resp = await client.post(url, json=payload)
            return f"Success: LinkedIn image posted ({resp.status_code})"
        except Exception as e:
            return f"Error: {str(e)}"

Example: Multi-Webhook Broadcast

Fire multiple webhooks in parallel:

@mcp.tool()
async def broadcast_alert(message: str) -> str:
    """Send alerts to multiple platforms in parallel."""
    import httpx
    import asyncio
    
    webhooks = [
        ("https://hooks.slack.com/...", {"text": message}),
        ("https://discord.com/api/webhooks/...", {"content": message}),
    ]
    
    async def send(url, data):
        async with httpx.AsyncClient() as client:
            return await client.post(url, json=data)
    
    results = await asyncio.gather(*[send(url, data) for url, data in webhooks])
    return f"Broadcast complete: {len(results)} webhooks fired"

📖 API Reference - Memory Tools

All available MCP tools for managing your knowledge graph:

Core Memory Operations

add_fact

Add a new fact to the knowledge graph with bi-temporal tracking.

await add_fact(
    source_entity="John",
    relation="works at",
    target_entity="Google",
    group_id="my_org",           # Optional
    session_id="session_123",     # Optional
    valid_at="2024-01-15T00:00:00Z"  # Optional - when fact became true
)

Smart Conflict Resolution: When adding location or employment facts, previous facts of the same type are automatically invalidated.

add_message

Add a natural language message and automatically extract entities using AI.

await add_message(
    content="Alice moved to San Francisco and started working at OpenAI",
    session_id="session_123",
    group_id="my_org",            # Optional
    extract_entities=True          # Uses OpenAI for extraction
)

Returns: Extracted entities and relationships as facts.

query_facts

Query facts from the knowledge graph.

await query_facts(
    entity_name="John",           # Optional - filter by entity
    group_id="my_org",            # Optional
    include_invalid=False,         # Include invalidated facts
    max_facts=20
)

query_at_time

Time-travel query - get facts valid at a specific point in time.

await query_at_time(
    timestamp="2024-01-15T00:00:00Z",
    entity_name="John",           # Optional
    group_id="my_org",            # Optional
    max_facts=20
)

Use Case: "Where did John work in January 2024?"

get_episodes

Get recent conversation sessions/episodes.

await get_episodes(
    group_ids=["my_org"],         # Optional
    max_episodes=10
)

clear_graph

Clear all data for specified groups. Warning: Permanent deletion!

await clear_graph(
    group_ids=["my_org"]          # Optional - defaults to DEFAULT_GROUP_ID
)

Server Management

get_status

Get comprehensive server status and statistics.

await get_status()
# Returns: node counts, relationship types, session stats, connection status

force_cleanup

Manually trigger cleanup of expired sessions and idle connections.

await force_cleanup()
# Returns: cleanup statistics

💡 Use Cases

Personal Knowledge Management

Track your life events, relationships, and locations with full history:

await add_message(
    "I met Sarah at the tech conference. She works at OpenAI.",
    session_id="my_life"
)
# Later: "Where did I meet Sarah?" → "At the tech conference"

Customer Relationship Management

Monitor customer interactions with automatic conflict resolution:

await add_fact("CustomerA", "status", "premium")
# Automatically invalidates previous "status" facts
# Query history: "What was CustomerA's status in January?"

AI Agent Memory

Give your AI agents persistent, queryable memory:

# Agent learns from conversation
await add_message(
    "User prefers morning meetings and uses Slack",
    session_id="agent_123"
)
# Agent recalls later: "What are the user's preferences?"

Workflow Automation

Combine knowledge with actions:

# When fact changes, trigger automation
if customer_upgraded_to_premium:
    await notify_sales_team(customer_name=name)
    await update_crm(customer_id=id, tier="premium")

❓ Frequently Asked Questions

Q: Does this require OpenAI?

A: No! OpenAI is optional for AI entity extraction. You can add facts manually without it.

Q: Can I use this with Claude Desktop?

A: Yes! Add the server URL to your claude_desktop_config.json:

{
  "mcpServers": {
    "knowledge-graph": {
      "url": "http://localhost:8080/sse"
    }
  }
}

Q: How do I query historical data?

A: Use the query_at_time tool:

await query_at_time(
    timestamp="2024-01-15T00:00:00Z",
    entity_name="John"
)

Q: Can I deploy this to production?

A: Absolutely! See DEPLOYMENT.md for guides on:

  • Replit Autoscale
  • Railway
  • Render
  • Fly.io
  • Docker
  • VPS

Q: How does fact invalidation work?

A: When you add a fact about location or employment, the system automatically finds previous facts of the same type and marks them as invalid_at: current_time. Your query results only show current facts unless you specifically request historical data.

Q: Can I create multi-webhook tools?

A: Yes! Add a tool to the Custom Tools section in main.py using asyncio.gather() to fire multiple webhooks simultaneously. See the Adding Custom Tools section for examples.

Q: Is my data secure?

A: Yes! Everything runs in your infrastructure. No data is sent anywhere except:

  • OpenAI (only if you use entity extraction)
  • Your configured webhooks (only when you call them)

Q: How much does it cost to run?

A: Free for self-hosting! Only costs:

  • FalkorDB hosting (free tier available)
  • OpenAI API usage (optional, ~$0.001 per extraction)

📋 Changelog

[1.0.0] - 2024-12-19

Added

  • ✅ Full bi-temporal tracking (created_at, valid_at, invalid_at, expired_at)
  • ✅ Smart conflict resolution for location and employment changes
  • ✅ Session-aware episodic memory with 30-minute TTL
  • ✅ OpenAI-powered entity extraction from natural language
  • ✅ Dynamic tool generator for automation workflows
  • ✅ Single webhook tool template
  • ✅ Multi-webhook parallel execution template
  • ✅ Docker and Docker Compose support
  • ✅ Replit Autoscale optimization
  • ✅ Background cleanup manager
  • ✅ Comprehensive documentation and examples

Supported Features

Feature Status Notes
Bi-Temporal Tracking Full implementation
AI Entity Extraction OpenAI GPT-4
Smart Invalidation Location, employment, relationships
Session Management Auto-cleanup after 30 min
Custom Tools Single & multi-webhook via @mcp.tool()
Parallel Webhooks asyncio.gather
Docker Support Complete stack included
Health Checks Built-in monitoring

🆘 Support

Need Help?

  1. Check Documentation: Start with QUICKSTART.md
  2. Join Community: High Ticket AI Builders - Free access!
  3. Watch Tutorial: Video Guide
  4. Report Bugs: GitHub Issues

🔧 Optional: Automation Engine OS

Need a visual tool to orchestrate your workflows?

If you want to manage webhook configurations, generate tools automatically, and orchestrate complex workflows without writing code, check out Automation Engine OS - it's free when you join our community!

What Automation Engine OS provides:

  • Visual webhook configuration builder
  • Automatic MCP tool code generation
  • Workflow orchestration dashboard
  • Multi-webhook template management
  • One-click tool deployment to your MCP server

Get free access: Join High Ticket AI Builders

Note: Automation Engine OS is completely optional. This MCP server works standalone - you can manually add tools to the Custom Tools section in main.py as shown in the Adding Custom Automation Tools section.


🤝 Contributing

Contributions are welcome! Areas for improvement:

  • 🔍 Additional temporal query operators
  • 🧠 Enhanced entity extraction prompts
  • 🔧 More webhook authentication methods
  • 📊 Performance optimizations
  • 🌐 Additional deployment platforms
  • 📖 More examples and tutorials

To contribute:

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

TL;DR: You can use this commercially, modify it, distribute it. Just keep the license notice.


🙏 Acknowledgments

  • Built with FastMCP
  • Powered by FalkorDB
  • AI features via OpenAI
  • Inspired by the High Ticket AI Builders community

⭐ Star History

Star History Chart


📞 Connect


<div align="center">

Built with ❤️ for the High Ticket AI Builders ecosystem

If this project helps you, please consider giving it a ⭐!

⬆ Back to Top

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选