
BigBugAI MCP Server
Enables access to BigBugAI cryptocurrency tools for getting trending tokens and performing token analysis by contract address. Provides production-ready API access with rate limiting and authentication for crypto market intelligence.
README
BigBugAI MCP (Python + FastMCP)
Production-ready MCP server exposing BigBugAI tools with stdio transport for local MCP clients (Claude Desktop, Cursor) and optional HTTP/SSE transport (FastAPI + uvicorn) for remote access.
- Auth via API key (env var)
- Per-key rate limiting (moving window; configurable via env)
- Typed Pydantic schemas for tool I/O
- Clean error handling and JSON-stable outputs
- Tests, ruff, and mypy configuration
Tools
get_trending_tokens(limit: int = 10) -> list[dict]
- GET
${BTUNIFIED_API}/api/tokens/newly-ingested
by default - Falls back to
${BTUNIFIED_API}/v1/trending/tokens
and a few other candidates if 404 - Override primary path with
BTUNIFIED_TRENDING_PATH
- Normalizes
{items: [...]} -> [...]
- GET
token_analysis_by_contract(chain: str, address: str) -> dict
- GET
${BTUNIFIED_API}/api/token-intel/{chain}/{address}/report
- GET
Requirements
- Python 3.11+
- Packages:
mcp[cli]
,httpx
,pydantic
,fastapi
,uvicorn
,limits
,pytest
,ruff
,mypy
Environment variables
BIGBUGAI_MCP_API_KEY
(required)BIGBUGAI_API_KEY
/BIGBUGAI_API_TOKEN
(optional; used for upstream HTTP calls if set. If not set, HTTP calls will fall back toBIGBUGAI_MCP_API_KEY
.)BTUNIFIED_API
(default:https://api.bigbug.ai
)MCP_RATE_LIMIT
(default:60/hour
, rate string perlimits
)
Install
Using uv (recommended):
- Unix/macOS
uv venv
source .venv/bin/activate
uv pip install -e .[dev]
- Windows PowerShell
uv venv
.venv\Scripts\Activate.ps1
uv pip install -e .[dev]
Alternatively, you can explicitly add packages (will update pyproject as needed):
uv add "mcp[cli]" httpx pydantic fastapi uvicorn limits pytest ruff mypy
Run (STDIO)
export BIGBUGAI_MCP_API_KEY="your-secret"
export BTUNIFIED_API="https://api.bigbug.ai"
uv run -m bigbugai_mcp.server_stdio
Windows PowerShell:
$env:BIGBUGAI_MCP_API_KEY="your-secret"
$env:BTUNIFIED_API="https://api.bigbug.ai"
uv run -m bigbugai_mcp.server_stdio
This mode is intended for local MCP clients (e.g., Claude Desktop, Cursor).
Note: Tools no longer require api_key
in the payload. The server reads the API key
from the environment (BIGBUGAI_MCP_API_KEY
) and applies rate limiting based on it.
Claude Desktop config
Create claude_desktop_config.json
:
{
"mcpServers": {
"bigbugai": {
"command": "uv",
"args": ["-m", "bigbugai_mcp.server_stdio"],
"env": {
"BIGBUGAI_MCP_API_KEY": "your-secret",
"BTUNIFIED_API": "https://api.bigbug.ai",
"MCP_RATE_LIMIT": "60/hour"
}
}
}
}
Run (HTTP)
uv run -m bigbugai_mcp.server_http
# server on :8000
curl -s http://localhost:8000/healthz
Expected output:
ok
MCP HTTP/SSE endpoints are mounted under /mcp
. Depending on your FastMCP version, an SSE stream may be available at /mcp/sse
.
Example cURL (SSE; may require -N
to keep the connection open and is primarily for debugging):
curl -N http://localhost:8000/mcp/sse
Note: MCP over HTTP/SSE is designed for compatible clients; manual cURL interaction is limited.
Smoke scripts
Quick sanity checks for the tools (require an API key in env):
-
Trending
# uses BIGBUGAI_API_KEY/BIGBUGAI_API_TOKEN/BIGBUGAI_MCP_API_KEY from env uv run python scripts/smoke_trending.py -l 5
-
Token analysis
# requires BIGBUGAI_MCP_API_KEY in env; optionally set BB_CHAIN/BB_ADDRESS $env:BIGBUGAI_MCP_API_KEY="your-secret" # PowerShell uv run python scripts/smoke_token_analysis.py
Testing and Quality
# Run unit tests
uv run pytest -q
# Lint
uv run ruff check .
# Type check
uv run mypy src
Project layout
bigbugai-mcp/
.github/workflows/ci.yml
CODE_OF_CONDUCT.md
CONTRIBUTING.md
LICENSE
README.md
SECURITY.md
pyproject.toml
scripts/list_tools.py
scripts/smoke_token_analysis.py
scripts/smoke_trending.py
src/bigbugai_mcp/__init__.py
src/bigbugai_mcp/auth.py
src/bigbugai_mcp/models.py
src/bigbugai_mcp/server_http.py
src/bigbugai_mcp/server_stdio.py
src/bigbugai_mcp/tools.py
tests/test_tools.py
Security
- Rotate API keys regularly
- Keep HTTP mode behind OAuth/reverse proxy if exposed publicly
- Rate limits are per API key in a moving window strategy
See SECURITY.md for reporting vulnerabilities.
Extending
Add more tools for BigBugAI endpoints (portfolio manager, investment suggester, etc.).
- Add new Pydantic request/response models in
src/bigbugai_mcp/models.py
- Add the tool function in
src/bigbugai_mcp/tools.py
- Decorate with
@guarded
and register inregister_tools()
- Write tests in
tests/
Contributing
Please see CONTRIBUTING.md for guidelines.
Code of Conduct
This project follows the Contributor Covenant.
License
MIT — see LICENSE.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。