BigContext MCP
Enables working with large documents of any size by intelligently segmenting them and using TF-IDF search to retrieve only relevant fragments, preventing context window saturation. Provides 31 domain-agnostic tools for document ingestion, semantic analysis, epistemological validation, and extraction verification across formats like PDF, EPUB, and HTML.
README
BigContext MCP
MCP Server for handling large documents with intelligent segmentation and TF-IDF search. Designed to work with documents of any size without saturating the model context window.
Installation
Via uvx (Recommended)
No need to clone the repository! Install directly:
uvx --from git+https://github.com/Rixmerz/bigcontext_mcp.git bigcontext-mcp
Configuration for Claude Desktop
Add to your ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):
{
"mcpServers": {
"bigcontext": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/Rixmerz/bigcontext_mcp.git",
"bigcontext-mcp"
]
}
}
}
Restart Claude Desktop and the 31 BigContext tools will be available.
Overview
BigContext MCP allows Claude to work with extensive documents (books, manuals, research papers) by loading only relevant fragments per query, instead of the entire document. It uses automatic segmentation and TF-IDF keyword search to retrieve the most relevant content.
Key Features
Document Processing
- Multi-format support: txt, md, PDF, EPUB, HTML
- Automatic segmentation: Detects chapters, sections, and hierarchical structure
- Efficient storage: SQLite with WAL mode for concurrent access
- TF-IDF indexing: Fast semantic search without external embeddings
31 Domain-Agnostic Tools
Core Tools (5)
| Tool | Description |
|---|---|
ingest_document |
Load, segment, and index a document |
search_segment |
Search for relevant segments using TF-IDF |
get_metadata |
Get metadata, structure, and top terms |
list_documents |
List all indexed documents |
compare_segments |
Compare two segments for themes and similarity |
Epistemology Tools (4)
| Tool | Description |
|---|---|
get_source_capabilities |
Analyze what a document CAN and CANNOT support |
validate_claim |
Check if a claim can be grounded in the source |
get_epistemological_report |
Complete analysis before scholarly claims |
check_language_operation |
Validate linguistic operations |
Semantic Tools (4)
| Tool | Description |
|---|---|
detect_semantic_frames |
Identify conceptual frameworks (causal, revelational, performative) |
analyze_subdetermination |
Distinguish indeterminacy from subdetermination |
detect_performatives |
Identify performative speech acts |
check_anachronisms |
Detect imported post-biblical concepts |
Cognitive Tools (4)
| Tool | Description |
|---|---|
audit_cognitive_operations |
Validate query and output compliance |
detect_inference_violations |
Scan for unauthorized connectors |
get_permitted_operations |
Get allowed operations per text type |
generate_safe_fallback |
Generate compliant response when violations detected |
Extraction Validators (14)
| Tool | Description |
|---|---|
validate_literal_quote |
Verify quoted text exists EXACTLY in source |
validate_proximity |
Check if segments are adjacent |
get_adjacent_segments |
Get segments within proximity constraint |
identify_speaker |
Detect who is speaking in a segment |
detect_pattern_contamination |
Detect pattern completion not in source |
validate_extraction_schema |
Validate pure data extraction |
detect_narrative_voice |
Distinguish voice types in text |
validate_agency_execution |
Distinguish EXECUTED vs REFERENCED actions |
detect_text_genre |
Identify genre based on structure |
detect_divine_agency_without_speech |
Find actions without speech verbs |
detect_weak_quantifiers |
Detect unsupported generalizations |
validate_existential_response |
Validate YES/NO question responses |
build_document_vocabulary |
Create closed vocabulary from document |
validate_output_vocabulary |
Check if output uses only source vocabulary |
Domain-Agnostic Architecture
All extraction validators accept an optional DomainVocabulary parameter:
class DomainVocabulary(BaseModel):
agents: list[str] | None = None # ['God', 'Lord'] or ['the Court']
addressees: list[str] | None = None # ['Lord'] or ['Your Honor']
oracle_formulas: list[str] | None = None # ['thus says the Lord']
praise_formulas: list[str] | None = None # ['praise the Lord']
action_verbs: list[str] | None = None # ['led', 'brought', 'created']
narration_verbs: list[str] | None = None # ['said', 'spoke', 'did']
state_verbs: list[str] | None = None # ['is', 'was', 'has been']
Example: Biblical Text
{
"agents": ["God", "Lord", "Moses"],
"addressees": ["Lord", "God"],
"action_verbs": ["led", "brought", "gave", "made", "created"],
"narration_verbs": ["said", "spoke", "did", "made", "saw"],
"oracle_formulas": ["thus says the Lord"],
"praise_formulas": ["praise the Lord"]
}
Example: Legal Documents
{
"agents": ["the Court", "Plaintiff", "Defendant"],
"addressees": ["Your Honor"],
"action_verbs": ["ruled", "ordered", "granted", "denied"],
"narration_verbs": ["stated", "found", "held", "declared"],
"oracle_formulas": ["the Court finds"],
"praise_formulas": []
}
Usage Examples
1. Ingest a document
result = ingest_document(
path="/path/to/document.pdf",
title="My Document",
chunk_size=2000,
overlap=100
)
# Returns: document_id, total_segments, structure
2. Search for content
results = search_segment(
query="agency without speech",
document_id=1,
limit=5
)
# Returns: matched segments with scores and snippets
3. Validate narrative voice
voice = detect_narrative_voice(
segment_id=722,
domain_vocabulary={
"agents": ["God", "Lord"],
"addressees": ["Lord", "God"],
"action_verbs": ["led", "brought", "gave", "made"]
}
)
# Returns: voice_type, confidence, evidence, is_retrospective
4. Validate agency execution
validation = validate_agency_execution(
segment_id=762,
divine_agent_patterns=["God", "Lord"]
)
# Returns: is_executed, mode, agent, action, evidence
5. Detect text genre
genre = detect_text_genre(
segment_id=1075,
domain_vocabulary={
"agents": ["God", "He"],
"oracle_formulas": ["thus says the Lord"],
"praise_formulas": ["praise the Lord"]
}
)
# Returns: genre, confidence, indicators
Technical Stack
- Python 3.11+ - Modern Python with type hints
- FastMCP 2.x - MCP server framework with decorator-based tools
- Pydantic 2.x - Schema validation
- SQLite - Local storage with WAL mode
- pdfplumber - PDF text extraction
- ebooklib - EPUB support
- beautifulsoup4 - HTML parsing
- NLTK - NLP tokenization
Development
Local Installation
# Clone repository
git clone https://github.com/Rixmerz/bigcontext_mcp.git
cd bigcontext_mcp
# Create virtual environment
uv venv .venv
source .venv/bin/activate
# Install in development mode
uv pip install -e .
# Run server
python -m bigcontext_mcp
Local Testing with Claude Desktop
{
"mcpServers": {
"bigcontext": {
"command": "uv",
"args": [
"run",
"--directory",
"/path/to/bigcontext-mcp",
"bigcontext-mcp"
]
}
}
}
Architecture Highlights
Structural Pattern Matching
- Pure structural patterns detect grammatical structure without vocabulary
- Dynamic pattern generation combines structure + agent-provided vocabulary
- Fallback mechanisms work with generic patterns when no vocabulary provided
No Hardcoded Assumptions
- Zero biblical terms hardcoded in validation logic
- Zero legal terms hardcoded
- Zero religious assumptions
- Agent provides ALL domain-specific vocabulary at runtime
Separation of Concerns
- SPEECH_VERB_WHITELIST: 38 speech verbs (said, spoke, called, etc.)
- CAUSAL_ACTION_VERBS: 90+ action verbs (caused, drove, made, etc.)
- STRUCTURAL_NARRATIVE_VOICE_PATTERNS: Grammar-only patterns
- DomainVocabulary: Agent-provided dynamic vocabulary
Changelog
V16: Python Migration (2026-01-10)
Complete rewrite from TypeScript to Python:
- Framework: FastMCP 2.x with decorator-based tool registration
- Distribution: uvx-ready (zero-clone install from GitHub)
- Database: SQLite with WAL mode (same schema, compatible)
- Validation: Pydantic replacing Zod
- Total: 31 MCP tools migrated and tested
V15: Domain-Agnostic Extraction Validators
- Expanded DomainVocabulary interface with 7 dynamic properties
- Refactored all validators to accept optional vocabulary parameter
- Zero hardcoded domain-specific terms
V14: Speech vs Action Verb Separation
- Created SPEECH_VERB_WHITELIST (38 speech verbs)
- Created CAUSAL_ACTION_VERBS (90+ action verbs)
V1-V13: Core Infrastructure
- Multi-format document ingestion (txt, md, PDF, EPUB, HTML)
- Automatic segmentation by chapters and sections
- TF-IDF search implementation
- SQLite storage with WAL mode
- 27 extraction validation tools
License
MIT
Contributing
We welcome contributions! Areas of interest:
- Additional domain vocabularies (legal, academic, literary)
- New extraction validators
- Performance optimizations
- Documentation improvements
Support
- Issues: https://github.com/Rixmerz/bigcontext_mcp/issues
- Repository: https://github.com/Rixmerz/bigcontext_mcp
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。