Binal Digital Twin MCP Server

Binal Digital Twin MCP Server

Enables users to search and interact with Binal's professional knowledge base through Claude Desktop using RAG technology. Users can ask natural language questions about Binal's technical skills, education, projects, and experience.

Category
访问服务器

README

🤖 Binal Digital Twin MCP Server

A powerful Model Context Protocol (MCP) server that brings Binal's professional knowledge base directly to Claude Desktop using advanced RAG (Retrieval-Augmented Generation) technology. Built with Next.js, Upstash Vector, and the MCP Handler library with server actions for seamless web testing.

Binal Digital Twin MCP Server

✨ Features

  • 🔍 RAG-Powered Search: Advanced semantic search through Binal's professional knowledge base
  • 🌐 Beautiful Web Interface: Modern, responsive UI with detailed setup instructions and testing
  • 🔄 Server Actions Integration: Web interface uses the same logic as the MCP server
  • 🎯 Intelligent Results: Relevance scoring and contextual ranking of search results
  • 📋 Copy-to-Clipboard: Easy configuration copying for Claude Desktop setup
  • 🔧 Multiple Transports: Supports SSE, stdio, and other MCP transport protocols
  • 🚀 Vercel Ready: Optimized for deployment on Vercel platform
  • 📱 Responsive Design: Works perfectly on desktop and mobile devices
  • 🧠 Educational: Detailed explanations of RAG and MCP protocol architecture

🖥️ Live Demo

Visit the live application: [Your Vercel URL here]

🚀 Quick Start

1. Clone and Install

git clone https://github.com/binal182/binalmcp.git
cd binalmcp
pnpm install

2. Set up Upstash Vector Database

  1. Create an account at Upstash
  2. Create a new Vector database
  3. Copy your REST URL and Token
  4. Create .env.local file:
UPSTASH_VECTOR_REST_URL=your_upstash_vector_rest_url_here
UPSTASH_VECTOR_REST_TOKEN=your_upstash_vector_rest_token_here

3. Start Development Server

pnpm run dev

The application will be available at:

  • Web Interface: http://localhost:3000 (setup instructions, documentation, and testing)
  • MCP Endpoint: http://localhost:3000/api/[transport] (for Claude Desktop)

🤖 Setting Up with Claude Desktop

The web interface at http://localhost:3000 provides detailed, step-by-step instructions with copy-to-clipboard functionality. Here's the quick version:

1. Install Claude Desktop

Download from claude.ai/download

2. Configure MCP Connection

Add this to your Claude Desktop config file:

Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "binal-digital-twin": {
      "command": "npx",
      "args": [
        "-y",
        "mcp-remote",
        "http://localhost:3000/api/mcp"
      ]
    }
  }
}

3. Restart Claude Desktop

Look for the hammer icon (🔨) in the input box - this indicates MCP tools are available!

4. Start Asking Questions!

Ask Claude natural language questions like:

  • "What programming languages does Binal know?"
  • "Tell me about Binal's education background"
  • "What AI/ML projects has Binal worked on?"
  • "What is Binal's experience with vector databases?"

🏗️ How It Works

This application uses mcp-handler and Upstash Vector to provide seamless RAG-powered search integration between web applications and AI assistants like Claude Desktop.

Architecture

Claude Desktop → Transport Protocol → /api/[transport] → Shared RAG Logic (/lib/rag-search.ts)
Web Interface → Server Actions → Shared RAG Logic (/lib/rag-search.ts)
                                      ↓
                               Upstash Vector Database
  1. Claude Desktop connects via various transport protocols (SSE, stdio, etc.)
  2. Transport Layer handles the MCP protocol communication
  3. MCP Handler processes tool calls and invokes shared RAG search logic
  4. RAG Search (/lib/rag-search.ts) contains vector search and result formatting
  5. Upstash Vector provides semantic search capabilities with embeddings
  6. Server Actions (for web) call the same shared RAG logic directly

Key Components

  • lib/rag-search.ts: Shared RAG search logic, schema, and tool definitions
  • app/api/[transport]/route.ts: MCP server endpoint using mcp-handler + shared logic
  • app/actions/mcp-actions.ts: Server actions that use the shared RAG search logic
  • app/page.tsx: Beautiful web interface with setup instructions and testing
  • components/: Reusable shadcn/ui components for the interface
  • data/: Sample data structure and population guidelines

Web Interface Benefits

The web interface uses Next.js Server Actions that import the same shared logic as the MCP server:

  • ✅ Same Zod schema validation (lib/rag-search.ts)
  • ✅ Identical search algorithm (single searchBinalKnowledge() function)
  • ✅ Consistent output formatting (same result structure)
  • ✅ Shared tool definitions (same name, description, schema)
  • ✅ True single source of truth architecture
  • MCP Tools: search_binal_knowledge tool with Zod validation for parameters

🚀 Deployment to Vercel

Option 1: Deploy Button (Recommended)

Deploy with Vercel

Option 2: Manual Deployment

  1. Connect to Vercel:

    pnpm i -g vercel
    vercel
    
  2. Add Environment Variables: In your Vercel dashboard, add:

    • UPSTASH_VECTOR_REST_URL
    • UPSTASH_VECTOR_REST_TOKEN
  3. Update Claude Desktop Config: Replace http://localhost:3000 with your Vercel URL:

    {
      "mcpServers": {
        "binal-digital-twin": {
          "command": "npx",
          "args": [
            "-y",
            "mcp-remote",
            "https://your-app.vercel.app/api/mcp"
          ]
        }
      }
    }
    
  4. Restart Claude Desktop to use the deployed version

🛠️ Technology Stack

🎯 Use Cases

  • 🎤 Technical Interviews: Learn about Binal's technical expertise and experience
  • 🤝 Project Collaboration: Understand Binal's skills for team projects
  • 🌐 Professional Networking: Get to know Binal's background and interests
  • 📊 Skill Assessment: Evaluate technical competencies and experience levels
  • 🤖 AI-Powered CV: Interactive resume experience via Claude Desktop
  • 🎓 Educational Tool: Demonstrate RAG and vector search technologies

🤝 Contributing

Contributions are welcome! This project is open source and MIT licensed.

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open a Pull Request

📚 Learn More

📄 License

MIT License - see LICENSE file for details.

👨‍💻 Author

Created by Binal as a digital twin RAG search server

⭐ If you find this project useful, please consider giving it a star on GitHub!


Built with ❤️ using Next.js, shadcn/ui, Upstash Vector, and the Model Context Protocol

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选