Blender MCP Router
Enables LLM routing through multiple providers (OpenAI, Anthropic, xAI) via LiteLLM and provides a bridge to Blender for 3D scene management, asset integration from PolyHaven/Sketchfab, and automation workflows. Combines unified text generation with comprehensive Blender integration through a persistent TCP connection.
README
Blender MCP Router
FastMCP server that exposes two layers of functionality:
- LLM routing through LiteLLM so a single FastMCP tool can reach OpenAI, Anthropic, xAI, or any other LiteLLM-supported provider.
- Blender bridge that proxies to the Blender MCP add-on over a persistent TCP socket, providing scene inspection, PolyHaven / Sketchfab helpers, and Hyper3D automation.
The server is designed for FastMCP Hub distribution: pyproject.toml defines the package, the MCP endpoint is hosted via FastMCP, and an optional REST shim is exposed for the Blender add-on.
Requirements
- Python 3.10+
- Blender MCP add-on running locally (for the Blender tools)
- API keys for any LLM providers you plan to route through LiteLLM
Install dependencies via:
pip install -e .
Configuration
Copy .env.example to .env and fill in the values.
| Variable | Purpose |
|---|---|
OPENAI_API_KEY |
Used by LiteLLM when routing to OpenAI models |
XAI_API_KEY |
Used for xAI (Grok) requests via LiteLLM |
ANTHROPIC_API_KEY |
Used for Anthropics models via LiteLLM |
OPENAI_MODEL |
Optional override for the gpt-5 alias |
XAI_MODEL |
Optional override for the grok-4-fast alias |
ANTHROPIC_MODEL |
Optional override for the claude-4 alias |
MCP_REST_TOKEN |
Shared secret for REST shim (X-Token header) |
All LLM-specific environment variables supported by LiteLLM can be passed through here as well (see LiteLLM docs for provider-specific keys).
Running
After configuration, start the server via the script entry point:
blender-mcp-router
The process starts two services:
- FastMCP HTTP endpoint on
127.0.0.1:8974/mcp - REST bridge for the Blender add-on on
127.0.0.1:8975
Both services are started inside server.main() so FastMCP Hub (or pipx run blender-mcp-router) can launch them.
MCP Tools
server.py registers the following FastMCP tools:
generate_text: Unified text generation routed through LiteLLM- Blender tools:
get_scene_info,get_object_info,get_viewport_screenshot,execute_blender_code, PolyHaven/Sketchfab helpers, and Hyper3D automation helpers
Each Blender tool forwards to the Blender MCP add-on using a JSON-over-TCP API. See that add-on for port configuration (default localhost:9876).
REST Shim /tools/call
The REST API exposes a subset of the MCP tools so non-MCP clients (like the Blender add-on) can call them. Requests must include an X-Token header if MCP_REST_TOKEN is set. The response format mirrors MCP content objects (text, json, image).
Health Check
GET /health returns { "ok": true } so deployment targets can monitor the process.
Development
- Run linting/formatting as desired (none enforced yet).
- The LiteLLM dependency keeps provider selection abstract; add more aliases in
MODEL_MAPas needed. - Additional tools can be exposed by adding
@mcp.tool()functions and listing them in_HTTP_EXPOSED_TOOL_NAMESwhen required by the REST shim.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。