Blender MCP Server
Enables AI agents to control Blender 3D software through natural language commands, supporting object creation, manipulation, materials, rendering, and scene management with 22 tools organized across 6 categories.
README
View the Demo Here!
https://drive.google.com/file/d/1VHnKps0HPqw4ipIw1GG_X68u8iuSRbCK/view
Prerequisites
Before you begin, make sure you have:
- Python 3.13+ installed
- Blender 5.0+ installed at
/Applications/Blender.app/Contents/MacOS/Blender(macOS)- For Linux/Windows: Update the
blender_pathinblender_mcp_filter.py
- For Linux/Windows: Update the
- Claude Desktop installed (for AI agent integration)
How to Install Dependencies
cd /path/to/blender_takehome
pip install -e .
This installs:
fastmcp>=2.12.4- MCP server frameworkpydantic>=2.0.0- Input validationfake-bpy-module-latest- Type stubs for development
How to Run the Server
This is the easiest way to use the server with Claude Desktop:
-
Copy the configuration file:
cp claude_desktop_config.json ~/Library/Application\ Support/Claude/claude_desktop_config.json -
Edit the configuration file and update the paths to match your project location:
{ "mcpServers": { "blender-server": { "command": "python3", "args": [ "/YOUR/PATH/TO/blender_takehome/blender_mcp_filter.py" ], "env": { "PYTHONPATH": "/YOUR/PATH/TO/blender_takehome:/YOUR/PATH/TO/blender_takehome/src" } } } } -
Now Open Blender -- the Blender MCP server will automatically be running now.
-
Restart Claude Desktop - it will automatically launch the Blender MCP server when you start a conversation.
-
Start Experimenting: Ask Claude to create a cube in Blender. You should see Blender open and a cube appear!
List of Tools Implemented
The server provides 22 tools organized into the following categories:
Object Creation (5 tools)
create_cube_tool- Create a cube primitivecreate_sphere_tool- Create a UV sphere primitivecreate_cylinder_tool- Create a cylinder primitivecreate_plane_tool- Create a plane primitiveduplicate_object_tool- Duplicate an existing object
Object Manipulation (5 tools)
move_object_tool- Move an object to a new locationrotate_object_tool- Rotate an objectscale_object_tool- Scale an objectdelete_object_tool- Delete an object from the sceneselect_object_tool- Select an object in the scene
Scene Management (3 tools)
list_objects_tool- List all objects in the sceneget_object_info_tool- Get detailed information about an objectclear_scene_tool- Remove all objects from the scene
Camera Operations (1 tool)
set_active_camera_tool- Set the active camera for rendering
Materials (2 tools)
create_material_tool- Create a new material with a base colorassign_material_tool- Assign a material to an object
Rendering (3 tools)
create_camera_tool- Create and configure a cameracreate_light_tool- Create a light sourcerender_scene_tool- Render the scene to an image file
File Operations (3 tools)
get_scene_filepath_tool- Get the current Blender file pathsave_file_tool- Save the scene to a fileopen_file_tool- Open an existing Blender file
Usage Examples
Once connected to Claude Desktop, you can ask Claude to:
- "Create a red cube at position (2, 0, 0)"
- "Add a sphere with radius 1.5"
- "Create a material called 'Metal' with color (0.8, 0.8, 0.9)"
- "Render the scene to /path/to/output.png"
- "List all objects in the scene"
- "Save the current file as "_______/Project.blend"
Claude will use the MCP tools to execute these commands in Blender.
Project Structure
blender_takehome/
├── src/
│ ├── models.py # Pydantic input validation models
│ ├── operations.py # Pure Blender operations (bpy API)
│ ├── tools.py # MCP tool wrappers
│ └── server.py # FastMCP server setup
├── blender_mcp_filter.py # Launches Blender and filters stdout
├── blender_mcp_server.py # Entry point script for Blender
├── claude_desktop_config.json # Claude Desktop configuration
└── pyproject.toml # Python dependencies
Design Choices
The server follows a three-layer architecture:
- Models (
src/models.py) - Pydantic models validate all inputs - Operations (
src/operations.py) - Pure functions that interact with Blender's bpy API - Tools (
src/tools.py) - MCP tool wrappers that expose operations to AI agents
I decided to separate this project into this three-layer architecture in order to isolate where errors were occuring very easily. This helped a lot in the debugging process. This has also simplified the creation of adding new tools within the MCP arsenal.
All that needs to be done to add a new tale is:
-
Add model in
src/models.py:class MyToolInput(BaseModel): param: str = Field(...) -
Add operation in
src/operations.py:def my_operation(input: MyToolInput) -> str: # Blender code here return "Success: ..." -
Add tool in
src/tools.py:@mcp.tool() async def my_tool_tool(param: str) -> str: input_model = MyToolInput(param=param) return my_operation(input_model)
That's it! FastMCP automatically registers the tool.
Tool Call Flow
1. Claude Desktop sends JSON-RPC request:
{"method": "tools/call", "params": {"name": "create_cube_tool", "arguments": {...}}}
2. FastMCP receives request, routes to create_cube_tool()
3. tools.py: create_cube_tool() validates input with CreateCubeInput
4. operations.py: create_cube() executes bpy.ops.mesh.primitive_cube_add()
5. Blender creates cube, updates scene
6. operations.py: Returns success message string
7. tools.py: Returns string to FastMCP
8. FastMCP sends JSON-RPC response:
{"result": {"content": [{"type": "text", "text": "Successfully created cube..."}]}}
9. Claude Desktop receives response
Error Flow
1. Invalid input (e.g., size = -1.0)
2. Pydantic validation fails in models.py
3. ValidationError raised with clear message
4. tools.py catches exception, returns "Error: size must be > 0.001"
5. FastMCP sends error response to Claude Desktop
6. Server continues running (no crash)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。