Blind-Audition-MCP
A zero-cost MCP server that forces AI to self-correct code using prompt injection and context isolation.
README
🛡️ Blind Auditor - MCP Server
"Code drunk, audit sober." — The Philosophy of Blind Auditor
Blind Auditor is a mandatory code auditing system built on the MCP (Model Context Protocol). It uses a unique "Thinking Isolation" mechanism to force AI Agents to enter an independent "audit phase" and self-review their code before outputting the final result.
🧠 Core Philosophy: Thinking Isolation
Traditional AI coding is often "generate and output," which allows errors and biases to slip through. Blind Auditor introduces a middle layer:
- Intercept: When the Agent wants to output code, it must first submit it to Blind Auditor.
- Isolate: Blind Auditor does not return the result immediately. Instead, it injects a mandatory system instruction, forcing the Agent to pause its current persona and switch to a "Ruthless Auditor" role.
- Audit: In this isolated context, the Agent must scan the generated code line by line against the predefined
rules.json. - Release: The code is unlocked and returned to the user only when the audit score meets the threshold (default > 80) and there are no Critical issues.
🎯 Key Features
- 🛡️ Zero Trust Architecture: Default distrust of the Agent's initial draft; it must pass an audit.
- 💰 Zero Extra Cost: Reuses the host IDE's current session model, requiring no additional API Key.
- ⚖️ Bias Removal: Forces a perspective switch via Prompt injection to break generation inertia.
- 📏 Strict Compliance: Hard-codes team code standards (
rules.json) into the generation process, which is more effective than simple Prompts. - 🔄 Auto-Fix Loop: Automatically triggers a "fix-resubmit" loop upon audit failure until compliance is met or the maximum retry count is reached.
🚀 Quick Start
1. Prerequisites
This project uses uv for dependency management (pip is also supported).
# Enter project directory
cd blind-auditor
# Install dependencies
uv sync
# Or
pip install -r requirements.txt
2. Configure Audit Rules (rules.json)
Create or edit rules.json in the project root. This is the auditor's "Rulebook".
{
"project_name": "MyCoreProject",
"strict_mode": true,
"max_retries": 3,
"rules": [
{
"id": "SEC-001",
"severity": "CRITICAL",
"description": "Strictly prohibit hardcoding any API Keys, passwords, or sensitive Tokens.",
"weight": 50
},
{
"id": "PERF-001",
"severity": "WARNING",
"description": "Avoid database queries or IO operations inside loops.",
"weight": 15
},
{
"id": "STYLE-001",
"severity": "PREFERENCE",
"description": "Use snake_case for variable names.",
"weight": 5
}
]
}
Configuration Fields:
severity:CRITICAL: Fatal error. If found, the audit fails immediately. Usually carries a high penalty.WARNING: Warning. Moderate penalty; accumulation can lead to failure.PREFERENCE: Style preference. Low penalty.
weight: The penalty points deducted when this rule is violated (Total score: 100).
3. Configure IDE (Antigravity / Cursor / Windsurf)
Step A: Add System Prompt (Critical)
To ensure the Agent knows it must use this tool, add the following instruction to your .cursorrules or IDE System Prompt settings:
# Blind Auditor Protocol
**CRITICAL INSTRUCTION**:
You are integrated with the **Blind Auditor MCP**.
Whenever you generate code for a user request, you **MUST NOT** output the code block directly to the user.
**Execution Protocol**:
1. **Draft**: Generate the code internally in your thought process.
2. **Submit**: Call the `submit_draft` tool with your code and language.
3. **Obey**: The tool will return a strict "Audit Instruction". You MUST follow it exactly to audit your own code.
4. **Finalize**: Only when the tool returns "✅ AUDIT PASSED" can you display the final code to the user.
**Prohibited**:
- Do NOT output code blocks before passing the audit.
- Do NOT skip the audit step for "simple" changes.
Step B: Configure MCP Server
Add the following to your MCP client configuration file (e.g., claude_desktop_config.json or IDE settings):
{
"mcpServers": {
"blind-auditor": {
"command": "python",
"args": ["-m", "src.main"],
"cwd": "/absolute/path/to/blind-auditor"
}
}
}
🔧 Tool Details
1. submit_draft
Submit a code draft.
- Input:
code(content),language(programming language) - Behavior: Locks the session and returns mandatory audit instructions.
2. submit_audit_result
Submit your audit conclusion.
- Input:
passed(bool): Whether you believe it passed.issues(list): List of issues found.score(int): Score from 0-100.
- Behavior:
- If
score < 80, forcespassed=False. - If passed, unlocks the code.
- If failed, increments retry count and requires the Agent to fix and resubmit.
- If
3. reset_session
Resets the state and clears the retry count.
🔁 Workflow Diagram
graph TD
User[User Request] --> Agent
Agent[Agent Generates Draft] -->|1. submit_draft| MCP
MCP -->|2. Inject Audit Instructions| Agent
subgraph "Thinking Isolation"
Agent -->|3. Self-Review| Agent
Agent -->|4. submit_audit_result| MCP
end
MCP -->|5. Verdict| Decision{Passed?}
Decision -->|No (Issues Found)| Retry[Retry Count +1]
Retry -->|Limit Not Reached| Fix[Agent Fixes Code]
Fix -->|Resubmit| Agent
Decision -->|Yes (Score >= 80)| Final[✅ Output Final Code]
Retry -->|Limit Reached| Force[⚠️ Force Output (With Warning)]
❓ Troubleshooting
Q: The Agent always outputs code directly without calling tools. A: Check if the System Prompt is configured correctly. You must explicitly tell the Agent "Do NOT output code directly". You can also manually remind it in the chat: "Please audit via Blind Auditor first".
Q: Why does it fail even if I give the code 100 points?
A: Check if any CRITICAL rules in rules.json were triggered. Current logic mainly relies on the score passed by the Agent, but if passed is True while score < 80, the system will force a rejection.
Q: Which programming languages are supported?
A: Theoretically, all languages are supported. Blind Auditor itself does not parse code syntax but relies on the Agent's understanding to match descriptions in rules.json.
🛠️ Development Guide
# Run server
python -m src.main
# Debug mode (output to stderr)
# View print statements in src/main.py
📄 License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。