BloodHound MCP Server
Enables security professionals to query and analyze Active Directory attack paths from BloodHound Community Edition data using natural language through Claude Desktop's Model Context Protocol interface.
README
BloodHound Model Context Protocol Server
A Model Context Protocol (MCP) server that enables Large Language Models to interact with BloodHound Community Edition data through Claude Desktop. This tool allows security professionals to query and analyze Active Directory attack paths using natural language.
Architecture
This MCP server provides a comprehensive interface to BloodHound Community Edition's REST API, not just a wrapper around Cypher queries. The implementation includes:
API Coverage
- Complete REST API Integration: Utilizes BloodHound CE's full REST API endpoints (
/api/v2/domains,/api/v2/users,/api/v2/groups, etc.) - Structured Data Access: Leverages purpose-built API endpoints for users, computers, groups, OUs, and GPOs
- Advanced Functionality: Includes ADCS analysis, graph search, shortest path algorithms, and edge composition analysis
- Authentication: Implements BloodHound's signature-based authentication system
Why Not Just Cypher Queries?
While Cypher queries are powerful, this MCP goes beyond simple query execution:
- Structured API Responses: Returns properly formatted, paginated data with counts and metadata
- Built-in Relationships: Utilizes BloodHound's pre-computed relationship mappings
- Error Handling: Proper HTTP status code handling and meaningful error messages
- Performance: Leverages BloodHound's optimized endpoints rather than raw graph traversal
- Completeness: Access to administrative rights, sessions, group memberships, and other complex relationships through dedicated endpoints
MCP Benefits
As a proper Model Context Protocol implementation:
- Tool Discoverability: LLM automatically discovers available analysis capabilities
- Type Safety: Strongly typed parameters and responses
- Contextual Help: Built-in documentation and examples for the LLM
- Resource Access: Provides Cypher query examples and patterns as MCP resources
Demo
Features
Core Capabilities
- Domain Analysis: Query domain information, users, groups, computers, and organizational structure
- User Intelligence: Analyze user privileges, group memberships, sessions, and administrative rights
- Group Analysis: Examine group memberships, controllers, and privilege relationships
- Computer Assessment: Investigate computer privileges, sessions, and administrative access
- Organizational Units: Explore OU structure and contained objects
- Group Policy Objects: Analyze GPO assignments and controllers
- Certificate Services: Investigate ADCS infrastructure and certificate templates
- Custom Cypher Queries: Execute advanced Neo4j queries for complex analysis
- Graph Search: Find shortest paths between security principals
Advanced Features
- Natural language querying of BloodHound data
- Attack path visualization and analysis
- Privilege escalation identification
- Cross-domain relationship analysis
- Kerberoasting target identification
- Administrative relationship mapping
Prerequisites
- Python 3.11+
- uv (Python package manager)
- Claude Desktop
- BloodHound Community Edition instance (accessible via network)
- BloodHound data loaded (from SharpHound, BloodHound.py, etc.)
- BloodHound API credentials (Token ID and Token Key)
Installation
-
Clone the repository
git clone <repository-url> cd bloodhound-mcp -
Install dependencies
uv sync -
Configure environment variables
Create a
.envfile in the project root:BLOODHOUND_DOMAIN=your-bloodhound-instance.domain.com BLOODHOUND_TOKEN_ID=your-token-id BLOODHOUND_TOKEN_KEY=your-token-keyNote: By default, the server connects using
httpson port443. If you're using BloodHound Community Edition with a different configuration, add these optional variables:BLOODHOUND_PORT=8080 BLOODHOUND_SCHEME=http
Configuration
Claude Desktop Setup
- Open Claude Desktop and navigate to Settings → Developer Tools
- Add the following configuration to your
claude_desktop_config.json:
{
"mcpServers": {
"bloodhound_mcp": {
"command": "uv",
"args": [
"--directory",
"/path/to/your/bloodhound-mcp",
"run",
"main.py"
]
}
}
}
- Replace
/path/to/your/bloodhound-mcpwith the actual path to your installation - Restart Claude Desktop
BloodHound API Token Setup
- Log into your BloodHound CE instance
- Navigate to Administration → API Tokens
- Create a new token with appropriate permissions
- Note the Token ID and Token Key for your
.envfile
Usage
Getting Started
- Start a new conversation in Claude Desktop
- Look for the hammer icon (🔨) indicating MCP tools are available
- Begin by asking about your domains:
What domains are available in BloodHound?
Example Queries
Domain Reconnaissance:
Show me all users in the DOMAIN.LOCAL domain
What computers are in the domain?
Find all Domain Admins
User Analysis:
What administrative rights does john.doe@domain.local have?
Show me all sessions for the user administrator
What groups is this user a member of?
Privilege Escalation:
Find all kerberoastable users
Show me users with DCSync privileges
What computers can I RDP to from this user?
Advanced Analysis:
Run a cypher query to find all paths to Domain Admin
Show me the shortest path from user A to user B
Find all users with SPN set
Security Considerations
Data Sensitivity Warning
This tool processes BloodHound data through Claude Desktop, which means Active Directory information is transmitted to Anthropic's servers. Do not use this tool with production or sensitive BloodHound data.
Recommended Use Cases
- Training environments (GOAD, DetectionLab, etc.)
- Demonstration purposes
- Learning and research
- Non-production domain analysis
Best Practices
- Use isolated lab environments
- Sanitize data before analysis
- Consider local LLM alternatives for sensitive environments
- Regular token rotation for BloodHound API access
Testing
Run the test suite to verify functionality:
# Basic functionality tests
uv run pytest tests/test_basics.py -v
# HTTP request testing
uv run pytest tests/test_bloodhound_http.py -v
# MCP tools testing
uv run pytest tests/test_mcp_tools.py -v
# Integration tests (requires running BloodHound instance)
BLOODHOUND_INTEGRATION_TESTS=1 uv run pytest tests/test_integration.py -v
Contributing
Contributions are welcome! This project is designed for learning and experimentation with MCPs and BloodHound APIs.
Development Setup
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run the test suite
- Submit a pull request
Roadmap
- [ ] Enhanced attack path analysis
- [ ] Azure Active Directory support
- [ ] Advanced graph visualizations
- [ ] Asset management integration
- [ ] Local LLM compatibility
- [ ] Additional ADCS attack scenarios
License
This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details.
Acknowledgments
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。