BMAD-MCP
Orchestrates complete agile development workflows from product requirements to QA testing through role-based stages (PO → Architect → SM → Dev → Review → QA). Manages workflow state, generates role-specific prompts, and saves artifacts while integrating with multiple AI engines for comprehensive project delivery.
README
BMAD-MCP
Business-Minded Agile Development workflow orchestrator as an MCP (Model Context Protocol) server.
Complete agile development workflow: PO → Architect → SM → Dev → Review → QA
Interactive Requirements Gathering - Asks clarifying questions to ensure complete requirements Dynamic Engine Selection - Uses Claude by default, dual-engine when needed Content Reference System - Efficient token usage via file references Human-Readable Task Names - Organizes by task name, not UUID
🎯 What is BMAD-MCP?
BMAD-MCP is a lightweight workflow orchestrator that manages the complete agile development process. It:
- Manages workflow state (which stage you're in, what's needed next)
- Dispatches role prompts (provides detailed prompts for each role)
- Saves artifacts (PRD, architecture, code, reports)
- Does NOT call LLMs (that's Claude Code's job)
🏗️ Architecture
User → Claude Code → bmad-mcp tool
↓
Returns: {
stage: "po",
role_prompt: "<complete PO prompt>",
engines: ["claude", "codex"],
context: {...}
}
↓
Claude Code executes:
- Calls Claude (with role_prompt)
- Calls Codex MCP (with role_prompt)
↓
Claude Code submits results → bmad-mcp
↓
bmad-mcp: merges, scores, saves, advances to next stage
📋 Workflow Stages
| Stage | Role | Engines | Description |
|---|---|---|---|
| PO | Product Owner | Claude + Codex | Requirements analysis (merge both) |
| Architect | System Architect | Claude + Codex | Technical design (merge both) |
| SM | Scrum Master | Claude | Sprint planning |
| Dev | Developer | Codex | Code implementation |
| Review | Code Reviewer | Codex | Code review |
| QA | QA Engineer | Codex | Testing and quality assurance |
🚀 Quick Start
Installation (3 Steps)
# Step 1: Install globally from npm
npm install -g bmad-mcp
# Step 2: Add to Claude Code
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'
# Step 3: Verify installation
bmad-mcp
# Expected output: "BMAD MCP Server running on stdio"
That's it! Restart Claude Code and you're ready to use BMAD workflow.
Usage Example
Simply tell Claude Code to use BMAD:
User: Use bmad-task to create a user authentication system
Claude Code will:
1. Start BMAD workflow (PO stage)
2. Generate Product Requirements Document (with interactive Q&A)
3. Generate System Architecture (with interactive Q&A)
4. Create Sprint Plan
5. Implement code (using Codex)
6. Perform code review
7. Run quality assurance tests
All artifacts saved to: .claude/specs/user-authentication-system/
Configuration Location
MCP configuration is automatically added to ~/.claude/config.json:
{
"mcpServers": {
"bmad": {
"type": "stdio",
"command": "bmad-mcp"
}
}
}
🔧 Advanced Installation
Option 1: NPM Install (Recommended)
npm install -g bmad-mcp
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'
Option 2: Build from Source
git clone https://github.com/cexll/bmad-mcp-server
cd bmad-mcp-server
npm install
npm run build
npm link # Makes bmad-mcp globally available
# Add to Claude Code
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'
Verify Installation
# Check if binary is available
which bmad-mcp
# Output: /usr/local/bin/bmad-mcp (or similar)
# Test the server directly
bmad-mcp
# Expected output: "BMAD MCP Server running on stdio"
# Press Ctrl+C to exit
# Restart Claude Code to load the configuration
Uninstall
# Remove from Claude Code
claude mcp remove bmad
# Uninstall npm package
npm uninstall -g bmad-mcp
📖 Usage
Basic Workflow
// 1. Start workflow
const startResult = await callTool("bmad-task", {
action: "start",
cwd: "/path/to/your/project",
objective: "Implement user login system"
});
const { session_id, task_name, role_prompt, engines } = JSON.parse(startResult.content[0].text);
// 2. Execute with engines
if (engines.includes("claude")) {
const claudeResult = await callClaude(role_prompt);
}
if (engines.includes("codex")) {
const codexResult = await callCodexMCP(role_prompt);
}
// 3. Submit results
await callTool("bmad-task", {
action: "submit",
session_id: session_id,
stage: "po",
claude_result: claudeResult,
codex_result: codexResult
});
// 4. Confirm and proceed (unified: saves + advances to next stage)
await callTool("bmad-task", {
action: "confirm",
session_id: session_id,
confirmed: true
});
Actions
start - Start a new workflow
{
"action": "start",
"cwd": "/path/to/project",
"objective": "Project description"
}
Returns:
{
"session_id": "uuid",
"task_name": "project-description",
"stage": "po",
"state": "generating",
"stage_description": "Product Owner - Requirements Analysis",
"requires_user_confirmation": true,
"interaction_type": "awaiting_generation",
"user_message": "📋 **BMAD 工作流已启动**...",
"role_prompt": "<complete prompt>",
"engines": ["claude"],
"context": {...},
"pending_user_actions": ["review_and_confirm_generation"]
}
submit - Submit stage results
{
"action": "submit",
"session_id": "uuid",
"stage": "po",
"claude_result": "...",
"codex_result": "..."
}
Returns (if score >= 90):
{
"session_id": "uuid",
"stage": "po",
"state": "awaiting_confirmation",
"score": 92,
"requires_user_confirmation": true,
"interaction_type": "user_decision",
"user_message": "✅ **PRD生成完成**\n质量评分:92/100...",
"final_draft_summary": "...",
"final_draft_file": ".bmad-task/temp/uuid/po_final_result_xxx.md",
"pending_user_actions": ["confirm", "reject_and_refine"]
}
Returns (if score < 90 with clarification questions):
{
"session_id": "uuid",
"stage": "po",
"state": "clarifying",
"current_score": 75,
"requires_user_confirmation": true,
"interaction_type": "user_decision",
"user_message": "⚠️ **需求澄清...**",
"gaps": ["Target user group unclear", "..."],
"questions": [{"id": "q1", "question": "...", "context": "..."}],
"pending_user_actions": ["answer_questions"]
}
confirm - Confirm and save (unified action)
{
"action": "confirm",
"session_id": "uuid",
"confirmed": true
}
Returns (saves artifact + advances to next stage):
{
"session_id": "uuid",
"stage": "architect",
"state": "generating",
"requires_user_confirmation": true,
"interaction_type": "awaiting_generation",
"user_message": "💾 **文档已保存,并已进入下一阶段**...",
"role_prompt": "<architect prompt>",
"engines": ["claude"],
"previous_artifact": ".claude/specs/task-name/01-product-requirements.md",
"pending_user_actions": ["review_and_confirm_generation"]
}
answer - Answer clarification questions
{
"action": "answer",
"session_id": "uuid",
"answers": {
"q1": "Target users are enterprise B2B customers",
"q2": "Expected 10k concurrent users with <200ms response time"
}
}
Returns:
{
"session_id": "uuid",
"stage": "po",
"state": "refining",
"requires_user_confirmation": true,
"interaction_type": "awaiting_regeneration",
"user_message": "📝 **已收到你的回答**...",
"role_prompt": "<updated prompt with user answers>",
"engines": ["claude"],
"pending_user_actions": ["regenerate_with_answers"]
}
approve - Approve current stage (SM stage only)
{
"action": "approve",
"session_id": "uuid",
"approved": true
}
Returns (when entering Dev stage):
{
"session_id": "uuid",
"stage": "dev",
"state": "generating",
"requires_user_confirmation": true,
"interaction_type": "awaiting_generation",
"user_message": "✅ **Sprint Plan 已批准**\n\n正在进入下一阶段:Developer - Implementation\n\nSprint Plan 包含 3 个 Sprint:\n1. Sprint 1: 基础架构\n2. Sprint 2: 核心功能\n3. Sprint 3: 优化和完善\n\n⚠️ 重要:请明确指示开发范围...",
"role_prompt": "<dev prompt>",
"engines": ["codex"],
"pending_user_actions": ["specify_sprint_scope_then_generate"]
}
Important - Dev Stage Behavior:
- After approving Sprint Plan, workflow enters Dev stage but does NOT auto-start development
- User must explicitly specify development scope:
- "开始开发" / "start development" → Implements ALL sprints (default)
- "开发 Sprint 1" / "implement sprint 1" → Implements only Sprint 1
- This ensures users have full control over what gets implemented and when
status - Query workflow status
{
"action": "status",
"session_id": "uuid"
}
Returns:
{
"session_id": "uuid",
"current_stage": "dev",
"current_state": "generating",
"stages": {...},
"artifacts": [...]
}
📁 File Structure
Your Project
your-project/
├── .bmad-task/
│ ├── session-abc-123.json # Workflow state (with content references)
│ ├── task-mapping.json # Maps session_id → task_name
│ └── temp/
│ └── abc-123/ # Temporary content files
│ ├── po_claude_result_xxx.md
│ ├── po_codex_result_xxx.md
│ └── po_final_result_xxx.md
├── .claude/
│ └── specs/
│ └── implement-user-login/ # Task name (human-readable slug)
│ ├── 01-product-requirements.md
│ ├── 02-system-architecture.md
│ ├── 03-sprint-plan.md
│ ├── 04-dev-reviewed.md
│ └── 05-qa-report.md
└── src/
Session State File
{
"session_id": "abc-123",
"task_name": "implement-user-login",
"cwd": "/path/to/project",
"objective": "Implement user login",
"current_stage": "dev",
"current_state": "generating",
"stages": {
"po": {
"status": "completed",
"claude_result_ref": {
"summary": "First 300 chars...",
"file_path": ".bmad-task/temp/abc-123/po_claude_result_xxx.md",
"size": 12450,
"last_updated": "2025-01-15T10:30:00Z"
},
"final_result_ref": {...},
"score": 92,
"approved": true
},
...
},
"artifacts": [".claude/specs/implement-user-login/01-product-requirements.md", ...]
}
🎨 Engine Configuration
PO & Architect Stages (Dynamic Engine Selection)
- Default: Only Claude (single engine)
- Dual Engine: Enabled when objective contains "codex" or "使用 codex"
- If dual engine enabled:
- Calls both Claude and Codex
- Each generates independent solution
- BMAD-MCP merges results:
- If both ≥ 90: choose higher score
- If one ≥ 90: choose that one
- If both < 90: choose higher score, refine
- Interactive Clarification:
- First iteration: Identify gaps, generate 3-5 clarification questions
- User answers questions
- Regenerate based on answers
- Iterate until score ≥ 90
SM Stage (Claude Only)
- Only calls Claude
- Scrum planning doesn't need Codex
Dev/Review/QA Stages (Codex Only)
- Only calls Codex MCP
- Uses GPT-5 for code tasks
- Important: Use
model: "gpt-5"(NOT "gpt-5-codex") - Parameters:
model: "gpt-5"sandbox: "danger-full-access"approval-policy: "on-failure"
🔄 Workflow Flow
graph TD
A[Start] --> B[PO Stage: Generate]
B --> C{Has Questions?}
C -->|Yes| D[Clarifying: User Answers]
D --> E[Refining: Regenerate]
E --> F{Score >= 90?}
C -->|No| F
F -->|No| C
F -->|Yes| G[Awaiting Confirmation]
G -->|confirm| H[Saved + Architect Stage]
H --> I{Has Questions?}
I -->|Yes| J[Clarifying: User Answers]
J --> K[Refining: Regenerate]
K --> L{Score >= 90?}
I -->|No| L
L -->|No| I
L -->|Yes| M[Awaiting Confirmation]
M -->|confirm| N[Saved + SM Stage]
N -->|approve| O[Dev Stage]
O --> P[Review Stage]
P --> Q[QA Stage]
Q --> R[Complete]
🛠️ Development
Project Structure
bmad-mcp/
├── src/
│ ├── index.ts # Main MCP server
│ └── master-prompt.ts # All role prompts
├── dist/ # Compiled output
├── package.json
├── tsconfig.json
└── README.md
Build
npm run build
Development Mode
npm run dev # Watch mode
Test Locally
npm run build
node dist/index.js
📚 Master Orchestrator Design
All role prompts are embedded in a single master-prompt.ts file:
- Centralized management: All roles in one place
- Workflow definition: Clear stage sequence
- Engine configuration: Which engines for each stage
- Quality gates: Score thresholds and approval points
🤝 Integration with Codex MCP
When calling Codex for Dev/Review/QA stages:
// Claude Code calls Codex MCP
await callTool("codex", {
prompt: role_prompt, // From bmad-task
model: "gpt-5", // IMPORTANT: Use "gpt-5", NOT "gpt-5-codex"
sandbox: "danger-full-access",
"approval-policy": "on-failure"
});
⚙️ Configuration
Quality Thresholds
Defined in master-prompt.ts:
quality_gates: {
po: { min_score: 90, approval_required: true },
architect: { min_score: 90, approval_required: true },
sm: { approval_required: true },
dev: {},
review: {},
qa: {}
}
Artifact Filenames
artifacts: {
po: "01-product-requirements.md",
architect: "02-system-architecture.md",
sm: "03-sprint-plan.md",
dev: "code-implementation",
review: "04-dev-reviewed.md",
qa: "05-qa-report.md"
}
🔍 Troubleshooting
Server not starting
# Check installation
which bmad-mcp
# Test directly
bmad-mcp
Tool name error
- Important: The tool name is
bmad-task, notbmad - Use
callTool("bmad-task", {...})in your code - Claude Code configuration should use
bmad-taskas the tool name
Session not found
- Ensure
.bmad-task/directory has write permissions - Check
session_idis correct - Verify
cwdpath is absolute
Scores not detected
- Ensure generated content includes:
Quality Score: X/100or"quality_score": 92in JSON - Check score format matches pattern (0-100)
- Score ≥ 90 required for PO/Architect stages to advance
Clarification workflow issues
- If you see
state: "clarifying", user must answer questions viaansweraction - Do NOT auto-generate answers - wait for real user input
- Check
requires_user_confirmation: truebefore proceeding
📝 License
MIT
🙋 Support
- Documentation: This README
- Issues: GitHub issues
- Reference: https://github.com/cexll/myclaude
Transform your development with BMAD - One workflow, complete agile process, quality assured.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。