Boring Gemini

Boring Gemini

An autonomous AI development agent that enables full-stack coding, automated verification, RAG-powered code search, and quality assurance through MCP tools. Supports Gemini CLI, Claude Code CLI, with features like parallel verification, security scanning, and spec-driven development.

Category
访问服务器

README

Python Version Version Evaluation smithery badge

Boring: Your Autonomous Coding Partner for Vibe Development

Enterprise-grade Autonomous AI Development Agent
A full-language automated coding and verification engine built for Cursor / Claude Desktop / VS Code / Gemini CLI.

中文版 README


🚀 Core Advantages

Feature Description
🌐 Polyglot & CLI Native Seamless switching between Gemini CLI and Claude Code CLI, zero API key required
🛡️ Parallel Verification Multi-threaded parallel verification, 3-5x performance boost
🧠 RAG Memory Hybrid Search (Vector + Keyword) + dependency graph for real-time retrieval
🛡️ Shadow Mode High-risk operations require human approval, with persistent config
📐 Spec-Driven 100% specification consistency from PRD to Code
🔒 Quality Gates CI/CD multi-tier gates + multi-language linting + 20+ file type security scanning

📦 Quick Installation

Option 1: Smithery (Recommended)

npx -y @smithery/cli@latest install boring/boring --client gemini-cli

Option 2: pip

pip install boring-aicoding
# Or full installation
pip install "boring[all]"

MCP Configuration

In mcp_config.json or IDE settings:

{
  "mcpServers": {
    "boring": {
      "command": "npx",
      "args": ["-y", "@smithery/cli", "run", "@boring/boring", "--config", "{}"]
    },
    "context7": {
      "command": "npx",
      "args": ["-y", "@upstash/context7-mcp"]
    }
  }
}

🎮 Two Usage Modes

Mode 1: MCP/Smithery (Recommended for most users)

Use Boring tools directly inside Gemini CLI, Cursor, or Claude Desktop:

You (in Gemini CLI): "Help me build a FastAPI auth service"
                     or
                     "/vibe_start Build an auth service"

Gemini + Boring: "Sure! Let me ask a few questions first..."

✅ No PROMPT.md required
✅ Interactive conversation
✅ Works with any MCP-compatible client

Mode 2: Autonomous Loop (boring start)

For long-running, fully automated development via CLI:

# Requires PROMPT.md in project root (created via boring-setup)
boring-setup my-project              # 1. Initialize project (Required!)
cd my-project                        # 2. Enter project directory
boring start                         # 3. Start autonomous loop
boring start --provider claude-code  # Use Claude Code CLI
boring start --provider gemini-cli   # Use Gemini CLI
boring run "Fix all lint errors"     # One-shot command

Required files for boring start:

your-project/
├── PROMPT.md      # ✅ Required - Instructions for AI
├── @fix_plan.md   # Optional - Task checklist
└── GEMINI.md      # Optional - Project context

📚 Complete Documentation

Tutorials & Guides

Document Description Audience
Getting Started Installation, first steps, MCP setup New users
🔥 Practical Demo 10-min hands-on showcase, 6 real-world examples 🆕 Vibe Coders
Complete Tutorial Quick start, core workflows, practical examples All developers
Advanced Developer Guide Architecture deep dive, tool development, internals Senior developers
Professional Playbook 18 expert workflows with /slash commands Senior developers

Reference & Appendices

Document Description Audience
Tool Reference (Appendix A) Complete 55+ MCP tools reference Quick lookup
FAQ (Appendix B) Installation, troubleshooting, API key questions When encountering issues
Prompt Philosophy (Appendix C) Architect persona design principles Prompt engineers
Architect Mode Hostile Architect evaluation mode Production code review

⚡ Performance & Architecture

1. Incremental Verification

  • Smart Caching: .boring_cache/verification.json stores file hashes.
  • Speed: Re-verifying 100+ unchanged files takes <2 seconds.
  • Force Mode: Use boring verify --force to bypass cache.

2. Incremental RAG Indexing

  • State Tracking: Only re-indexes changed files.
  • CLI: boring rag index (incremental by default).

3. Private AI & Tool Switching

  • Supported Modes: Gemini CLI (recommended), Claude Code CLI (recommended), Ollama (local), SDK (API Key).
  • Auto-detection: System automatically detects local command tools at startup.
  • Configuration:
    # Run with custom timeout
    boring start --timeout 60
    
    # One-Shot Command (New!)
    boring run "Review this code and fix bugs"
    boring start --provider claude-code
    boring verify --provider gemini-cli
    

4. Quality Trend Tracking

  • History Recording: Audit scores stored in .boring_brain/quality_history.json.
  • Visualization: Use boring_quality_trend tool to draw ASCII trend charts.

5. Parallel Verification (V10.13)

  • Concurrent Processing: Uses ThreadPoolExecutor to maximize CPU utilization for large projects.
  • Speed Boost: 3x-5x faster verification on clean builds.
  • Real-time Progress: Rich CLI progress bar independent of CI logs.

6. Contrastive Evaluation

  • A/B Testing: Use evaluate --level PAIRWISE to compare two implementations side-by-side.
  • LLM Judge: AI selects winner based on correctness, logic, and efficiency.
  • Bias Mitigation: Automatic position bias handling via A/B/A order verification.

7. Developer Experience

  • Config File: .boring.toml for project-specific rules.
  • Custom Prompts: Override Judge Prompts in [boring.prompts].
  • Linter Override: Customize tool parameters in [boring.linter_configs].

🛠️ MCP Toolset (Consolidated & Dynamic)

Boring V10.16 adopts Dynamic Discovery Architecture to solve context overflow caused by too many tools.

🔎 Dynamic Discovery (AI Only)

  • boring://capabilities: Read this resource to discover all available capabilities.
  • boring://tools/{category}: Read detailed tool usage for a specific category.

🧰 Core Tools (Consolidated)

To reduce context consumption, we consolidated 50+ tools into 14 high-level entry points:

Category Main Tool Description
Security boring_security_scan SAST, secret detection, dependency scanning (Bandit/Safety)
Transactions boring_transaction Atomic Git operations (Start/Commit/Rollback)
Background boring_task Async background tasks (Verify/Test/Lint)
Context boring_context Cross-session memory save/load
Profile boring_profile User preferences and cross-project learning
Verification boring_verify Multi-level code verification (Basic/Standard/Full)
RAG Memory boring_rag_search Semantic search and dependency context retrieval. Use boring_rag_reload to hot-reload dependencies after installation.
Agents boring_multi_agent [PROMPT GENERATOR / EXECUTOR] Returns prompts or executes workflow in background (execute=True). Helper tools: boring_prompt_plan, boring_prompt_fix
Shadow boring_shadow_mode Safe sandbox for high-risk operations
Git boring_commit Semantic commit message generation from task.md (used by smart_commit prompt)
Workspace boring_workspace_switch Multi-project workspace switching
Knowledge boring_learn Project knowledge extraction and storage
Plugins boring_run_plugin External plugin execution
Evaluation boring_evaluate LLM-as-Judge code scoring

🚀 Quick Start Prompts

One-click workflows designed for Claude Desktop / Gemini CLI users:

Prompt Purpose Usage
vibe_start Launch complete development workflow /vibe_start Build a FastAPI auth service
quick_fix Auto-fix all code issues /quick_fix
full_stack_dev Full-stack app development /full_stack_dev my-app "Next.js + FastAPI"

💡 Vibe Coding Mode: Describe your idea, let AI handle the rest!

🚀 Quick Start

Use Slash Commands to jumpstart your development:

  1. Start Boring:

    boring start
    
  2. Enter Command:

    /vibe_start Build a FastAPI auth service
    

    Or for specific tech stacks:

    /full_stack_dev my-app "Next.js + Tailwind + Supabase"
    

Note: All templates and shortcuts are now consolidated into Slash Commands (Prompts) for a unified experience.

List available templates

boring templates list


**Built-in Templates:**
| Template ID | Description |
|-------------|-------------|
| `fastapi-auth` | FastAPI + JWT authentication service |
| `nextjs-dashboard` | Next.js admin dashboard |
| `cli-tool` | Python CLI tool (Typer) |
| `vue-spa` | Vue 3 single-page application |

---

## 📊 Live Monitoring

Two monitoring options for terminal lovers and visual dashboards:

- **Terminal Dashboard (TUI)**: Run `boring-monitor`. Displays status, API call counts, and recent logs in terminal.
- **Web Dashboard**: Run `boring-dashboard`. Streamlit-powered visual interface with project trends and knowledge base inspection.

---

## 🌐 Supported Languages

| Language | Syntax Check | Linter | Test Runner |
|----------|--------------|--------|-------------|
| Python | ✅ compile() | ✅ ruff | ✅ pytest |
| JS/TS | ✅ node --check | ✅ eslint | ✅ npm test |
| Go | ✅ go fmt | ✅ golangci-lint | ✅ go test |
| Rust | ✅ rustc | ✅ cargo clippy | ✅ cargo test |
| Java | ✅ javac | - | ✅ mvn/gradle |
| C/C++ | ✅ gcc/g++ | ✅ clang-tidy | - |

---

## 💡 Pro Tips

### Tip 1: SpecKit Workflow (5 Steps)

Before writing code, Boring guides you through:

1. `speckit_constitution` → Establish Principles (Constitution)
2. `speckit_clarify` → Clarify Requirements
3. `speckit_plan` → Create Implementation Plan
4. `speckit_checklist` → Build Acceptance Criteria
5. `speckit_analyze` → Verify Consistency (Spec vs Plan)

> **"Measure Twice, Cut Once"** - AI implementation!

### Tip 2: Use Hybrid Mode

| Task Type | Recommended Tool |
|-----------|------------------|
| Small changes | `boring_apply_patch` |
| Large features | `run_boring` + SpecKit |
| Quality check | `boring_evaluate` |

### Tip 3: Accumulate Experience

Develop → AI fixes errors → Record to .boring_memory Project ends → boring_learn → Extract patterns to .boring_brain Next project → AI auto-references!


### Tip 4: Custom Lint Rules

Create `ruff.toml`:

```toml
line-length = 120
[lint]
ignore = ["T201", "F401"]  # Allow print() and unused imports

📚 Quick Tutorials

1. New Project Development

You: Help me create a TypeScript API project
AI: (runs speckit_plan) Generating implementation_plan.md...
You: Approve this plan
AI: (runs boring_multi_agent) Starting Plan→Code→Review loop...

2. Code Verification

You: Verify the code quality of this project
AI: (runs boring_verify --level FULL) 
    ✅ Syntax check passed
    ⚠️ Found 3 lint issues
    ✅ Tests passed (12/12)

3. RAG Search

You: I want to find code that handles user authentication
AI: (runs boring_rag_search "user authentication")
    Found 3 related functions:
    1. auth.py:verify_token (L23-45)
    2. middleware.py:require_auth (L67-89)
    ...

🔌 Git Hooks

Automatically verify code before commit/push:

boring hooks install    # Install
boring hooks status     # Status
boring hooks uninstall  # Remove
Hook Trigger Verification Level
pre-commit Every commit STANDARD
pre-push Every push FULL
quick-check Every commit QUICK (multi-language)

🆕 V10.16.3 New Features (Security & Stability)

1. Enhanced Shadow Mode 🛡️

What is Shadow Mode? Shadow Mode is the security core of Boring, acting as a mandatory interception layer between the AI and your file system.

  • Function: It intercepts all destructive operations (e.g., file writes, deletions, command execution).
  • Workflow: AI requests operation -> Shadow Mode evaluates impact -> Puts in pending queue -> Requires YOUR approval (boring_shadow_approve) to execute.
  • Strict Enforcement: In v10.16.3, we patched all bypasses. Even background agent patches or minor edits require approval if you are in STRICT mode.

Three Modes:

  • DISABLED (⚠️ Risky): No interception. For isolated containers only.
  • ENABLED (🛡️ Default): Auto-approves low-risk ops (reads), blocks high-risk ops.
  • STRICT (🔒 Secure): Intercepts ALL write operations. Highest security level.

2. Robust Transactions 💾

Non-Interactive Git: boring_transaction now automatically bypasses GPG/credential prompts, preventing CI hangs.

3. Smart RAG Environment 🧠

Auto-Discovery: RAG tools now automatically find user-installed Python packages (chromadb), solving "module not found" issues in isolated environments.

🆕 V10.16.0 New Features

1. Quality Gates (CI/CD)

Project includes .github/workflows/quality-gates.yml:

# Auto-runs on push to GitHub
Tier 1: Lint & Format     # ruff check, ruff format
Tier 2: Security Scan     # bandit, safety
Tier 3: Unit Tests        # pytest --cov-fail-under=39
Tier 4: Integration Tests # main branch only

2. Project Configuration (.boring.toml)

Create .boring.toml in project root for custom quality policies:

[boring.quality_gates]
min_coverage = 40           # Minimum coverage
max_complexity = 15         # Maximum complexity
max_file_lines = 500        # Maximum file lines

3. Evaluation Rubric (LLM Judge)

Use standardized rubrics for code quality evaluation:

boring_evaluate --target src/main.py --level DIRECT

4. Quick Multi-language Check

# Install Quick Check Hook
boring hooks install

🆕 V10.15 New Features

1. Incremental Verification (Git-based)

# Verify only Git-changed files
boring verify --incremental

# MCP call
boring_verify(incremental=true)

2. Multi-project RAG Search

boring_rag_search(
    query="authentication middleware",
    additional_roots=["/path/to/other-project"]
)

3. Dependency Graph Visualization

boring_visualize --scope full --output mermaid

4. Parallel Review (Multi-Reviewer)

boring_agent_review --parallel

5. VS Code Integration (JSON-RPC Server)

Enables native development experience in editors:

  1. Real-time Error Hints: Red squiggles in code on save
  2. Quality Score CodeLens: Display Quality: 4.5/5 above functions
  3. Sidebar Semantic Search: Natural language code search
  4. One-click Quick Fix: Auto-fix via lightbulb icon
// .vscode/settings.json
{
  "boring.enableServer": true,
  "boring.port": 8765
}

6. Other IDE Support (LSP & CLI)

  • Cursor / VS Code derivatives: Full support via MCP Server
  • IntelliJ / PyCharm / Vim: Run boring lsp start --port 9876 for JSON-RPC server
  • CLI Mode: All automation available via boring command

7. Error Diagnostics

Auto-analyze errors and suggest fixes:

boring_diagnose --error "ModuleNotFoundError: No module named 'foo'"

🎯 Future Vision

Note: The following features require server support (not yet implemented)

  • 🌐 Boring Cloud: Cloud collaboration and team sharing
  • 🤝 Team Workflows: Multi-person workflow synchronization
  • 🔐 Enterprise SSO: Enterprise-grade identity authentication

🙏 Acknowledgments

Thanks to the following projects and communities:


📄 License

Apache License 2.0


🔗 Links

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选