Brave Search MCP Server
Integrates the Brave Search API into AI assistants to enable web and local business search capabilities. This allows models to perform real-time information retrieval and locate places using the Model Context Protocol.
README
Brave Search MCP Server
This project implements a Model Context Protocol (MCP) server for Brave Search, allowing integration with AI assistants like Claude.
Prerequisites
- Python 3.11+
- uv - A fast Python package installer and resolver
Installation
Installing via Smithery
To install Brave Search MCP server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @thomasvan/mcp-brave-search --client claude
Manual Installation
-
Clone the repository:
git clone https://github.com/thomasvan/mcp-brave-search.git cd mcp-brave-search -
Create a virtual environment and install dependencies using uv:
uv venv source .venv/bin/activate # On Windows, use: .venv\Scripts\activate uv pip install -r requirements.txt -
Set up your Brave Search API key:
export BRAVE_API_KEY=your_api_key_hereOn Windows, use:
set BRAVE_API_KEY=your_api_key_here
Usage
-
Configure your MCP settings file (e.g.,
claude_desktop_config.json) to include the Brave Search MCP server:{ "mcpServers": { "brave-search": { "command": "uv", "args": [ "--directory", "path-to\\mcp-python\\mcp-brave-search\\src", "run", "server.py" ], "env": { "BRAVE_API_KEY": "YOUR_BRAVE_API_KEY_HERE" } } } }Replace
YOUR_BRAVE_API_KEY_HEREwith your actual Brave API key. -
Start the Brave Search MCP server by running your MCP-compatible AI assistant with the updated configuration.
-
The server will now be running and ready to accept requests from MCP clients.
-
You can now use the Brave Search functionality in your MCP-compatible AI assistant (like Claude) by invoking the available tools.
Available Tools
The server provides two main tools:
brave_web_search: Performs a web search using the Brave Search API.brave_local_search: Searches for local businesses and places.
Refer to the tool docstrings in src/server.py for detailed usage information.
Development
To make changes to the project:
- Modify the code in the
srcdirectory as needed. - Update the
requirements.txtfile if you add or remove dependencies:uv pip freeze > requirements.txt - Restart the server to apply changes.
Testing
The project includes both unit tests and integration tests:
Installing Test Dependencies
uv pip install pytest pytest-asyncio pytest-cov
Running Unit Tests
Unit tests can be run without an API key and use mocks to simulate API responses:
# Run all unit tests
python -m pytest tests/unit/
# Run with verbose output
python -m pytest tests/unit/ -v
Running Integration Tests
Integration tests require a valid Brave API key and make real API calls:
# Run integration tests with your API key
BRAVE_API_KEY_INTEGRATION="your_api_key_here" python -m pytest tests/integration/ -v
Test Coverage
To check test coverage:
python -m pytest --cov=src/mcp_brave_search
Troubleshooting
If you encounter any issues:
- Ensure your Brave API key is correctly set.
- Check that all dependencies are installed.
- Verify that you're using a compatible Python version.
- If you make changes to the code, make sure to restart the server.
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。