Brave Search MCP Server
Enables web and local business searches through the Brave Search API. Provides general web search with pagination and filtering, plus local business search with automatic fallback to web results.
README
Forensics Connection MCP Server
A Model Context Protocol (MCP) server that analyzes forensic evidence to identify people and their connections, then generates Python code for network visualization.
Features
- LLM-Powered Relationship Analysis: Uses OpenAI's GPT-4 to intelligently analyze relationships between people in evidence text
- Network Visualization: Generates comprehensive Python code using NetworkX and Matplotlib for interactive network graphs
- Evidence Parsing: Automatically extracts and categorizes different types of evidence (police reports, witness statements, communications, etc.)
- Connection Strength Scoring: Assigns relationship strength scores (1-10) based on evidence quality
- Cluster Analysis: Identifies groups and central figures in the network
- Flexible Filtering: Configurable minimum connection strength thresholds
Installation
- Clone the repository:
git clone <repository-url>
cd mcp-forensics
- Install dependencies:
npm install
- Set up environment variables:
cp .env.example .env
# Edit .env and add your OpenAI API key
- Build the project:
npm run build
Configuration
Create a .env file with your OpenAI API key:
OPENAI_API_KEY=your_openai_api_key_here
Usage
As an MCP Server
The server can be used with any MCP-compatible client:
npm start
Available Tools
analyze_connections
Analyzes evidence text to identify people and their connections.
Parameters:
evidence(required): The evidence text to analyzeoptions(optional):includeVisualization(boolean, default: true): Whether to include Python visualization codeminimumConnectionStrength(number, default: 3): Minimum connection strength to include (1-10)groupByOrganization(boolean, default: true): Whether to group people by organization
Returns:
- List of people identified with their organizations and roles
- Connections between people with strength scores and evidence
- Central figures in the network
- Clusters/groups of related people
- Python code for network visualization
Example Usage
// Example evidence input
const evidence = `
Police Report #001: Incident occurred at 123 Main St on January 15, 2024 at 2:30 PM.
Witness John Smith reported suspicious activity. Vehicle license plate ABC123 was seen leaving the scene.
Email Chain - Subject: Concerns about OpenAI:
From: elon.musk@x.com To: satya.nadella@microsoft.com, mark.zuckerberg@meta.com
"I'm increasingly concerned about Sam's strategic direction..."
Meeting Notes - Private Tech Leaders Dinner:
Attendees: Musk, Nadella, Zuckerberg. Topic: OpenAI concerns.
`;
// The server will return detailed analysis and Python visualization code
LLM-Enhanced Relationship Analysis
The system uses OpenAI's GPT-4 to analyze relationships with sophisticated context understanding:
- Direct Communications: Emails, messages, calls (strength: 9-10)
- Face-to-Face Meetings: Shared events, professional collaboration (strength: 7-8)
- Group Communications: Shared concerns, indirect interactions (strength: 5-6)
- Professional Associations: Mentioned together, weak connections (strength: 3-4)
- Coincidental Mentions: Very weak connections (strength: 1-2)
Python Visualization Output
The generated Python code includes:
- Network Graph: Interactive visualization with NetworkX and Matplotlib
- Organization Grouping: Color-coded nodes by organization
- Connection Types: Different edge styles for different relationship types
- Centrality Analysis: Node sizes based on degree centrality
- Statistical Report: Network statistics and key findings
- Customizable Layout: Spring layout for optimal node positioning
Required Python Dependencies
The generated code requires:
pip install networkx matplotlib numpy
Development
Scripts
npm run build: Compile TypeScript to JavaScriptnpm run dev: Build with watch modenpm start: Run the compiled servernpm run inspector: Run with MCP inspector for debugging
Project Structure
src/
├── index.ts # Main server entry point
├── types.ts # TypeScript type definitions
├── evidenceParser.ts # Evidence parsing and LLM analysis
├── pythonGenerator.ts # Python code generation
└── ...
Connection Types
The system identifies several types of connections:
- communication: Direct communications (emails, messages)
- meeting: In-person meetings and events
- witness: Witness/observer relationships
- location: Geographic/location-based connections
- organization: Same organization affiliations
- other: General associations and mentions
Error Handling
- Fallback to pattern-based analysis if LLM calls fail
- Rate limiting protection for OpenAI API calls
- Comprehensive error reporting and logging
- Graceful degradation for missing data
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。