Browser Automation MCP Server

Browser Automation MCP Server

Enables intelligent web scraping through a browser automation tool that can search Google, navigate to webpages, and extract content from various websites including GitHub, Stack Overflow, and documentation sites.

Category
访问服务器

README

🤖 Browser Automation Agent

A powerful browser automation tool built with MCP (Model Controlled Program) that combines web scraping capabilities with LLM-powered intelligence. This agent can search Google, navigate to webpages, and intelligently scrape content from various websites including GitHub, Stack Overflow, and documentation sites.

🚀 Features

  • 🔍 Google Search Integration: Finds and retrieves top search results for any query
  • 🕸️ Intelligent Web Scraping: Tailored scraping strategies for different website types:
    • 📂 GitHub repositories
    • 💬 Stack Overflow questions and answers
    • 📚 Documentation pages
    • 🌐 Generic websites
  • 🧠 AI-Powered Processing: Uses Mistral AI for understanding and processing scraped content
  • 🥷 Stealth Mode: Implements browser fingerprint protection to avoid detection
  • 💾 Content Saving: Automatically saves both screenshots and text content from scraped pages

🏗️ Architecture

This project uses a client-server architecture powered by MCP:

  • 🖥️ Server: Handles browser automation and web scraping tasks
  • 👤 Client: Provides the AI interface using Mistral AI and LangGraph
  • 📡 Communication: Uses stdio for client-server communication

⚙️ Requirements

  • 🐍 Python 3.8+
  • 🎭 Playwright
  • 🧩 MCP (Model Controlled Program)
  • 🔑 Mistral AI API key

📥 Installation

  1. Clone the repository:
git clone https://github.com/yourusername/browser-automation-agent.git
cd browser-automation-agent
  1. Install dependencies:
pip install -r requirements.txt
  1. Install Playwright browsers:
playwright install
  1. Create a .env file in the project root and add your Mistral AI API key:
MISTRAL_API_KEY=your_api_key_here

📋 Usage

Running the Server

python main.py

Running the Client

python client.py

Sample Interaction

Once both the server and client are running:

  1. Enter your query when prompted
  2. The agent will:
    • 🔍 Search Google for relevant results
    • 🧭 Navigate to the top result
    • 📊 Scrape content based on the website type
    • 📸 Save screenshots and content to files
    • 📤 Return processed information

🛠️ Tool Functions

get_top_google_url

🔍 Searches Google and returns the top result URL for a given query.

browse_and_scrape

🌐 Navigates to a URL and scrapes content based on the website type.

scrape_github

📂 Specializes in extracting README content and code blocks from GitHub repositories.

scrape_stackoverflow

💬 Extracts questions, answers, comments, and code blocks from Stack Overflow pages.

scrape_documentation

📚 Optimized for extracting documentation content and code examples.

scrape_generic

🌐 Extracts paragraph text and code blocks from generic websites.

📁 File Structure

browser-automation-agent/
├── main.py            # MCP server implementation
├── client.py          # Mistral AI client implementation
├── requirements.txt   # Project dependencies
├── .env               # Environment variables (API keys)
└── README.md          # Project documentation

📤 Output Files

The agent generates two types of output files with timestamps:

  • 📸 final_page_YYYYMMDD_HHMMSS.png: Screenshot of the final page state
  • 📄 scraped_content_YYYYMMDD_HHMMSS.txt: Extracted text content from the page

⚙️ Customization

You can modify the following parameters in the code:

  • 🖥️ Browser window size: Adjust width and height in browse_and_scrape
  • 👻 Headless mode: Set headless=True for invisible browser operation
  • 🔢 Number of Google results: Change num_results in get_top_google_url

❓ Troubleshooting

  • 🔌 Connection Issues: Ensure both server and client are running in separate terminals
  • 🎭 Playwright Errors: Make sure browsers are installed with playwright install
  • 🔑 API Key Errors: Verify your Mistral API key is correctly set in the .env file
  • 🛣️ Path Errors: Update the path to main.py in client.py if needed

📜 License

MIT License

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.


Built with 🧩 MCP, 🎭 Playwright, and 🧠 Mistral AI

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
mcp-server-qdrant

mcp-server-qdrant

这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。

官方
精选
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选