Browser Use MCP Server
A FastMCP server that enables browser automation through natural language commands, allowing Language Models to browse the web, fill out forms, click buttons, and perform other web-based tasks via a simple API.
README
<div align="center"> <br /> <br /> <img src="public/light.svg" alt="Browser Use MCP Server" width="100%"> <br /> <br /> </div>
Browser Use MCP Server
A FastMCP server that enables browser automation through natural language commands. This server allows Language Models to browse the web, fill out forms, click buttons, and perform other web-based tasks via a simple API.
Quick Start
1. Install the package
Install with a specific provider (e.g., OpenAI)
pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[openai]"
Or install all providers
pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[all-providers]"
Install Playwright browsers
playwright install chromium
2. Configure your MCP client
Add the browser-use-mcp server to your MCP client configuration:
{
"mcpServers": {
"browser-use-mcp": {
"command": "browser-use-mcp",
"args": ["--model", "gpt-4o"],
"env": {
"OPENAI_API_KEY": "your-openai-api-key", // Or any other provider's API key
"DISPLAY": ":0" // For GUI environments
}
}
}
}
Replace "your-openai-api-key" with your actual API key or use an environment variable reference like process.env.OPENAI_API_KEY.
3. Use it with your favorite MCP client
Example using mcp-use with Python
import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient
async def main():
# Load environment variables
load_dotenv()
# Create MCPClient from config file
client = MCPClient(
config={
"mcpServers": {
"browser-use-mcp": {
"command": "browser-use-mcp",
"args": ["--model", "gpt-4o"],
"env": {
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
"DISPLAY": ":0",
},
}
}
}
)
# Create LLM
llm = ChatOpenAI(model="gpt-4o")
# Create agent with the client
agent = MCPAgent(llm=llm, client=client, max_steps=30)
# Run the query
result = await agent.run(
"""
Navigate to https://github.com, search for "browser-use-mcp", and summarize the project.
""",
max_steps=30,
)
print(f"\nResult: {result}")
if __name__ == "__main__":
asyncio.run(main())
Using Claude for Desktop
- Open Claude for Desktop
- Go to Settings → Experimental features
- Enable Claude API Beta and OpenAPI schema for API
- Add the following configuration to your Claude Desktop config file:
- Mac:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%AppData%\Claude\claude_desktop_config.json
- Mac:
{
"mcpServers": {
"browser-use": {
"command": "browser-use-mcp",
"args": ["--model", "claude-3-opus-20240229"]
}
}
}
- Start a new conversation with Claude and ask it to perform web tasks
Supported LLM Providers
The following LLM providers are supported for browser automation:
| Provider | API Key Environment Variable |
|---|---|
| OpenAI | OPENAI_API_KEY |
| Anthropic | ANTHROPIC_API_KEY |
GOOGLE_API_KEY |
|
| Cohere | COHERE_API_KEY |
| Mistral AI | MISTRAL_API_KEY |
| Groq | GROQ_API_KEY |
| Together AI | TOGETHER_API_KEY |
| AWS Bedrock | AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY |
| Fireworks | FIREWORKS_API_KEY |
| Azure OpenAI | AZURE_OPENAI_API_KEY and AZURE_OPENAI_ENDPOINT |
| Vertex AI | GOOGLE_APPLICATION_CREDENTIALS |
| NVIDIA | NVIDIA_API_KEY |
| AI21 | AI21_API_KEY |
| Databricks | DATABRICKS_HOST and DATABRICKS_TOKEN |
| IBM watsonx.ai | WATSONX_API_KEY |
| xAI | XAI_API_KEY |
| Upstage | UPSTAGE_API_KEY |
| Hugging Face | HUGGINGFACE_API_KEY |
| Ollama | OLLAMA_BASE_URL |
| Llama.cpp | LLAMA_CPP_SERVER_URL |
For more information check out: https://python.langchain.com/docs/integrations/chat/
You can create a .env file in the project directory with your API keys:
OPENAI_API_KEY=your_openai_key_here
# Or any other provider key
Troubleshooting
- API Key Issues: Ensure your API key is correctly set in your environment variables or
.envfile. - Provider Not Found: Make sure you've installed the required provider package.
- Browser Automation Errors: Check that Playwright is correctly installed with
playwright install chromium. - Model Selection: If you get errors about an invalid model, try using the
--modelflag to specify a valid model for your provider. - Debug Mode: Use
--debugto enable more detailed logging that can help identify issues. - MCP Client Configuration: Make sure your MCP client is correctly configured with the right command and environment variables.
License
MIT # browser-use-mcp
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。