Browser Use MCP Server

Browser Use MCP Server

A FastMCP server that enables browser automation through natural language commands, allowing Language Models to browse the web, fill out forms, click buttons, and perform other web-based tasks via a simple API.

Category
访问服务器

README

<div align="center"> <br /> <br /> <img src="public/light.svg" alt="Browser Use MCP Server" width="100%"> <br /> <br /> </div>

Browser Use MCP Server

A FastMCP server that enables browser automation through natural language commands. This server allows Language Models to browse the web, fill out forms, click buttons, and perform other web-based tasks via a simple API.

Quick Start

1. Install the package

Install with a specific provider (e.g., OpenAI)

pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[openai]"

Or install all providers


pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[all-providers]"

Install Playwright browsers

playwright install chromium

2. Configure your MCP client

Add the browser-use-mcp server to your MCP client configuration:

{
    "mcpServers": {
        "browser-use-mcp": {
            "command": "browser-use-mcp",
            "args": ["--model", "gpt-4o"],
            "env": {
                "OPENAI_API_KEY": "your-openai-api-key",  // Or any other provider's API key
                "DISPLAY": ":0"  // For GUI environments
            }
        }
    }
}

Replace "your-openai-api-key" with your actual API key or use an environment variable reference like process.env.OPENAI_API_KEY.

3. Use it with your favorite MCP client

Example using mcp-use with Python

import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
    # Load environment variables
    load_dotenv()

    # Create MCPClient from config file
    client = MCPClient(
        config={
            "mcpServers": {
                "browser-use-mcp": {
                    "command": "browser-use-mcp",
                    "args": ["--model", "gpt-4o"],
                    "env": {
                        "OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
                        "DISPLAY": ":0",
                    },
                }
            }
        }
    )

    # Create LLM
    llm = ChatOpenAI(model="gpt-4o")

    # Create agent with the client
    agent = MCPAgent(llm=llm, client=client, max_steps=30)

    # Run the query
    result = await agent.run(
        """
        Navigate to https://github.com, search for "browser-use-mcp", and summarize the project.
        """,
        max_steps=30,
    )
    print(f"\nResult: {result}")

if __name__ == "__main__":
    asyncio.run(main())

Using Claude for Desktop

  1. Open Claude for Desktop
  2. Go to Settings → Experimental features
  3. Enable Claude API Beta and OpenAPI schema for API
  4. Add the following configuration to your Claude Desktop config file:
    • Mac: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %AppData%\Claude\claude_desktop_config.json
{
    "mcpServers": {
        "browser-use": {
            "command": "browser-use-mcp",
            "args": ["--model", "claude-3-opus-20240229"]
        }
    }
}
  1. Start a new conversation with Claude and ask it to perform web tasks

Supported LLM Providers

The following LLM providers are supported for browser automation:

Provider API Key Environment Variable
OpenAI OPENAI_API_KEY
Anthropic ANTHROPIC_API_KEY
Google GOOGLE_API_KEY
Cohere COHERE_API_KEY
Mistral AI MISTRAL_API_KEY
Groq GROQ_API_KEY
Together AI TOGETHER_API_KEY
AWS Bedrock AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
Fireworks FIREWORKS_API_KEY
Azure OpenAI AZURE_OPENAI_API_KEY and AZURE_OPENAI_ENDPOINT
Vertex AI GOOGLE_APPLICATION_CREDENTIALS
NVIDIA NVIDIA_API_KEY
AI21 AI21_API_KEY
Databricks DATABRICKS_HOST and DATABRICKS_TOKEN
IBM watsonx.ai WATSONX_API_KEY
xAI XAI_API_KEY
Upstage UPSTAGE_API_KEY
Hugging Face HUGGINGFACE_API_KEY
Ollama OLLAMA_BASE_URL
Llama.cpp LLAMA_CPP_SERVER_URL

For more information check out: https://python.langchain.com/docs/integrations/chat/

You can create a .env file in the project directory with your API keys:

OPENAI_API_KEY=your_openai_key_here
# Or any other provider key

Troubleshooting

  • API Key Issues: Ensure your API key is correctly set in your environment variables or .env file.
  • Provider Not Found: Make sure you've installed the required provider package.
  • Browser Automation Errors: Check that Playwright is correctly installed with playwright install chromium.
  • Model Selection: If you get errors about an invalid model, try using the --model flag to specify a valid model for your provider.
  • Debug Mode: Use --debug to enable more detailed logging that can help identify issues.
  • MCP Client Configuration: Make sure your MCP client is correctly configured with the right command and environment variables.

License

MIT # browser-use-mcp

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选