Bugcrowd MCP Server
Provides secure access to the Bugcrowd bug bounty platform API, optimized for OpenAI's Agents SDK integration to enable vulnerability management and security research.
README
Bugcrowd MCP Server
A high-performance MCP (Model Context Protocol) server that provides secure, tool-based access to the Bugcrowd API, allowing for natural language interaction through various AI agent platforms.
Features
- Broad API Coverage: Provides tools for interacting with Organizations, Programs, Submissions, Assets, and more.
- Multi-Agent Support: Includes ready-to-use agents for OpenAI, Anthropic (Claude), Google (Gemini), and FastMCP.
- Secure: Uses environment variables for API credentials and performs input validation.
- Dynamic Help: Includes a
help()tool that provides real-time documentation for all available tools.
Getting Started
1. Installation
# Clone the repository
git clone https://github.com/unstrike/Bugcrowd_MCP_Server.git
cd Bugcrowd_MCP_Server
# Create virtual environment
uv venv
source .venv/bin/activate
# Install all dependencies at once
uv sync
# Or, install packages manually
uv add mcp httpx openai-agents fastmcp anthropic google-generativeai
2. Set Up Credentials
export BUGCROWD_API_USERNAME="your-username"
export BUGCROWD_API_PASSWORD="your-password"
# And the key for your chosen AI platform
export OPENAI_API_KEY="your-key"
export ANTHROPIC_API_KEY="your-key"
export GOOGLE_AI_API_KEY="your-key"
3. Test the Server
Run the included shell script to verify that the MCP server can start and respond to a basic tool call.
./tests/test_server.sh
4. Run the Agent
Run the main agent orchestrator to start an interactive session.
uv run python -m bugcrowd_agents.agent_orchestrator
Usage
Interactive Session
Once the agent is running, you can ask it questions or give it commands.
Example Prompts:
- "Show me available bug bounty programs"
- "What are the 5 most recent vulnerability submissions?"
- "Get details for the organization with ID org-123"
- "Use the help tool to see all available commands"
Switching Agents
You can switch between AI platforms by setting the AGENT_PLATFORM environment variable.
# Run with the Gemini agent
AGENT_PLATFORM=gemini uv run python -m bugcrowd_agents.agent_orchestrator
# Run with the Claude agent
AGENT_PLATFORM=claude uv run python -m bugcrowd_agents.agent_orchestrator
# Run with the FastMCP agent
AGENT_PLATFORM=fastmcp uv run python -m bugcrowd_agents.agent_orchestrator
Supported platforms: openai (default), claude, gemini, fastmcp.
Configuring Agent Models (Optional)
You can override the default models for each agent by setting the following environment variables:
- Claude:
CLAUDE_MAIN_MODEL,CLAUDE_SUMMARY_MODEL - Gemini:
GEMINI_MAIN_MODEL,GEMINI_SUMMARY_MODEL - OpenAI:
OPENAI_MODEL - FastMCP: The model is determined by the
FASTMCP_PROVIDERand can be configured with the variables above (e.g.,CLAUDE_MAIN_MODELif the provider isanthropic).
Configuring the FastMCP Agent
The fastmcp agent is a powerful, flexible client that can be configured to use different LLM backends (Claude, Gemini, or OpenAI) by setting the FASTMCP_PROVIDER environment variable. This allows you to leverage fastmcp as a versatile intermediary for various AI services.
Supported providers: anthropic (default), google, openai.
Ensure you have the corresponding API key (e.g., GOOGLE_AI_API_KEY) set as an environment variable for the provider you choose.
Examples:
# Run FastMCP with the default Anthropic (Claude) backend
AGENT_PLATFORM=fastmcp uv run python -m bugcrowd_agents.agent_orchestrator
# Run FastMCP with the Google (Gemini) backend
FASTMCP_PROVIDER=google AGENT_PLATFORM=fastmcp uv run python -m bugcrowd_agents.agent_orchestrator
# Run FastMCP with the OpenAI backend
FASTMCP_PROVIDER=openai AGENT_PLATFORM=fastmcp uv run python -m bugcrowd_agents.agent_orchestrator
Available Tools
The server provides the following tools. For detailed parameter information, run the agent and type help('<tool_name>').
| Category | Tool | Description |
|---|---|---|
| Organizations | get_organizations |
List all accessible organizations |
get_organization |
Get specific organization details | |
| Programs | get_programs |
List bug bounty programs |
get_program |
Get specific program details | |
| Submissions | get_submissions |
List vulnerability submissions |
get_submission |
Get specific submission details | |
create_submission |
Create a new vulnerability report | |
update_submission |
Update an existing submission | |
| Reports | get_reports |
Alternative reports endpoint |
get_report |
Get specific report details | |
| Assets | get_customer_assets |
List security test targets |
get_customer_asset |
Get specific asset details | |
| Rewards | get_monetary_rewards |
List bounty rewards |
get_monetary_reward |
Get specific reward details | |
| Users | get_users |
List users in an organization |
get_user |
Get specific user details | |
| Health | server_health |
Check server and API connectivity |
| Help | help |
Get detailed help for any tool |
Advanced Integration
For direct integration with platform-specific CLIs or tools (bypassing the built-in agent handlers), you can use the provided configuration templates.
OpenAI (codex)
The OpenAI codex CLI uses a config.toml file. The docs/config.toml file is a ready-to-use template.
- Copy
docs/config.tomlto your~/.codex/config.toml. - In the copied file, update the
cwdvariable to the absolute path of yourBugcrowd_MCP_Serverproject directory. - Ensure your
BUGCROWD_API_USERNAMEandBUGCROWD_API_PASSWORDare set as environment variables.
Gemini, Claude, and other MCP-compatible tools
These platforms use a standard config.json file. The docs/config.json file is a ready-to-use template.
- Copy
docs/config.jsonto the appropriate location for your tool (e.g.,~/.gemini/settings.json). - In the copied file, update the
cwdvariable to the absolute path of yourBugcrowd_MCP_Serverproject directory. - Ensure your
BUGCROWD_API_USERNAMEandBUGCROWD_API_PASSWORDare set as environment variables.
Documentation
- API Reference: A static reference for all tool and endpoint details.
- Architecture Diagram: An overview of the system architecture.
- Bugcrowd REST API: The official API documentation that this server is built upon.
For more detailed information on MCP server configuration, refer to the official documentation for your platform:
- OpenAI: Codex MCP Server Configuration
- Google Gemini: Configure MCP Servers
- Anthropic Claude: MCP for Claude
- FastMCP: JSON Configuration and Running a Server
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。