BWA MCP Server

BWA MCP Server

Enables AI assistants to perform DNA/RNA sequence alignment using BWA (Burrows-Wheeler Aligner), supporting both short and long read alignment to reference genomes with indexing, BWA-MEM, and BWA-backtrack algorithms.

Category
访问服务器

README

bio-mcp-bwa

MCP (Model Context Protocol) server for the BWA (Burrows-Wheeler Aligner) sequence alignment tool.

Overview

This MCP server provides access to BWA functionality, allowing AI assistants to perform alignment of short and long sequencing reads to a reference genome.

Features

  • bwa_index: Create an index for a reference genome.
  • bwa_mem: Align reads using the BWA-MEM algorithm.
  • bwa_aln: Find SA coordinates with the BWA-backtrack algorithm.
  • bwa_samse: Generate single-end alignments in SAM format.
  • bwa_sampe: Generate paired-end alignments in SAM format.
  • Support for large reference genomes and read files.

Installation

Prerequisites

  • Python 3.9+
  • BWA installed (bwa)

Install BWA

# macOS
brew install bwa

# Ubuntu/Debian
sudo apt-get install bwa

# From conda
conda install -c bioconda bwa

Install the MCP server

git clone https://github.com/bio-mcp/bio-mcp-bwa
cd bio-mcp-bwa
pip install -e .

Configuration

Add to your MCP client configuration (e.g., Claude Desktop ~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "bio-bwa": {
      "command": "python",
      "args": ["-m", "src.server"],
      "cwd": "/path/to/bio-mcp-bwa"
    }
  }
}

Environment Variables

  • BIO_MCP_MAX_FILE_SIZE: Maximum input file size in bytes (default: 50GB)
  • BIO_MCP_TIMEOUT: Command timeout in seconds (default: 3600)
  • BIO_MCP_BWA_PATH: Path to BWA executable (default: finds in PATH)
  • BIO_MCP_TEMP_DIR: Temporary directory for processing

Usage

Once configured, the AI assistant can use the following tools:

bwa_index - Create BWA Index

Create a BWA index for a reference genome.

Parameters:

  • reference_fasta (required): Path to the reference FASTA file.
  • algorithm: Indexing algorithm (bwtsw or is). Defaults to bwtsw for genomes >2GB.

bwa_mem - Align with BWA-MEM

Align reads using the BWA-MEM algorithm.

Parameters:

  • reference (required): Path to the indexed reference genome.
  • reads1 (required): Path to the first reads file (FASTQ).
  • reads2: Path to the second reads file for paired-end alignment.
  • threads: Number of threads to use (default: 4).
  • min_seed_length: Minimum seed length (default: 19).
  • band_width: Band width for banded alignment (default: 100).
  • read_group: Read group header line.

bwa_aln - Find SA Coordinates

Find SA coordinates with the BWA-backtrack algorithm.

Parameters:

  • reference (required): Path to the indexed reference genome.
  • reads (required): Path to the reads file (FASTQ).
  • threads: Number of threads to use (default: 4).
  • max_mismatches: Maximum number of mismatches (default: 4).
  • max_gap_opens: Maximum number of gap opens (default: 1).

bwa_samse - Generate Single-End SAM

Generate alignments in SAM format for single-end reads.

Parameters:

  • reference (required): Path to the indexed reference genome.
  • sai_file (required): Path to the .sai file from bwa_aln.
  • reads (required): Path to the original reads file.

bwa_sampe - Generate Paired-End SAM

Generate alignments in SAM format for paired-end reads.

Parameters:

  • reference (required): Path to the indexed reference genome.
  • sai_file1 (required): Path to the .sai file for read 1.
  • sai_file2 (required): Path to the .sai file for read 2.
  • reads1 (required): Path to the reads file 1.
  • reads2 (required): Path to the reads file 2.

Examples

Index a reference genome

Create a BWA index for the file hg38.fasta.

Align paired-end reads

Align the paired-end reads from r1.fastq and r2.fastq to the hg38 reference genome using BWA-MEM.

Development

Running tests

pytest tests/

Building Docker image

docker build -t bio-mcp-bwa .

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选