Calibre RAG MCP Server

Calibre RAG MCP Server

Enables semantic search and contextual conversations with your Calibre ebook library using vector-based RAG technology. Supports project-based organization, multi-format book processing, and OCR capabilities for enhanced content extraction and retrieval.

Category
访问服务器

README

Calibre RAG MCP Server

Enhanced Calibre MCP server with RAG (Retrieval-Augmented Generation) capabilities for project-based vector search and contextual conversations.

Features

  • RAG-Enhanced Search: Vector-based semantic search using FAISS and Transformers
  • Project-Based Organization: Create isolated vector search projects for different contexts
  • Multi-Format Support: Process books in various formats (EPUB, PDF, MOBI, etc.)
  • OCR Capabilities: Extract text from images and scanned PDFs using Tesseract
  • Advanced Text Processing: Natural language processing for better content understanding
  • Windows Compatible: Designed specifically for Windows environments

Technologies Used

  • Vector Search: FAISS for efficient similarity search
  • Embeddings: Xenova Transformers for local embedding generation
  • OCR: Tesseract for optical character recognition
  • PDF Processing: Multiple PDF parsing libraries (pdf-parse, pdf-poppler, pdf2pic)
  • Image Processing: Sharp for image manipulation
  • NLP: Natural language processing with multiple libraries

Prerequisites

  • Node.js >= 16.0.0
  • Calibre installed on Windows
  • ImageMagick (for enhanced image processing)
  • Tesseract OCR (for text extraction from images)

Installation

  1. Clone this repository:
git clone https://github.com/yourusername/calibre-rag-mcp-nodejs.git
cd calibre-rag-mcp-nodejs
  1. Install dependencies:
npm install
  1. Run setup (Windows):
setup.bat

Configuration

The server automatically detects your Calibre library location. For custom configurations, modify the settings in server.js.

Usage

Starting the Server

npm start

Available Tools

  • search: Semantic search across your ebook library
  • fetch: Retrieve specific content from books
  • list_projects: List all RAG projects
  • create_project: Create a new RAG project
  • add_books_to_project: Add books to a project for vectorization
  • search_project_context: Search within specific projects

Example MCP Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "calibre-rag": {
      "command": "node",
      "args": ["path/to/calibre-rag-mcp-nodejs/server.js"]
    }
  }
}

Project Structure

calibre-rag-mcp-nodejs/
├── server.js              # Main MCP server
├── package.json           # Dependencies and scripts
├── setup.bat              # Windows setup script
├── test-*.js              # Various test files
├── projects/              # RAG projects storage
├── CONFIG.md              # Configuration documentation
├── USAGE_EXAMPLES.md      # Usage examples
└── QUICK_TEST.md          # Quick testing guide

Testing

Run the test suite:

npm test

Individual test files:

  • test-enhanced-server.js - Enhanced server functionality
  • test-ocr-full.js - OCR capabilities
  • test-pdf-approaches.js - PDF processing
  • test-enhanced-auto.js - Automated testing

Documentation

Requirements

System Requirements

  • Windows 10/11
  • Node.js 16+
  • Calibre installed
  • At least 4GB RAM (8GB+ recommended for large libraries)

Optional Dependencies

  • ImageMagick (for enhanced image processing)
  • Tesseract OCR (for text extraction from scanned documents)

Troubleshooting

Common Issues

  1. FAISS Installation: If FAISS fails to install, ensure you have proper build tools
  2. Tesseract Not Found: Install Tesseract and add to PATH
  3. Memory Issues: Reduce batch sizes for large document processing

Debug Mode

Enable verbose logging by setting environment variable:

set DEBUG=calibre-rag:*
npm start

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

License

Licensed under the Apache License 2.0. See LICENSE file for details.

Support

For issues and questions, please open an issue on GitHub.

Changelog

v1.0.0

  • Initial release with RAG capabilities
  • Project-based vector search
  • Multi-format document support
  • OCR integration
  • Windows optimization

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选