Capture Win MCP
Enables AI assistants to interact with macOS windows through yabai, providing window listing organized by Spaces and screenshot capture capabilities.
README
capture-win-mcp
MCP (Model Context Protocol) server for capturing macOS windows and tracking Spaces. This server provides tools for AI assistants to interact with macOS windows through yabai and the built-in screencapture utility.
📖 Quick Start Guide | 📦 Distribution Guide | 👨💻 Developer Docs
Features
- List Windows: Get detailed information about all windows organized by macOS Space (virtual desktop)
- Capture Window: Take screenshots of specific windows by their ID
Prerequisites
- macOS (tested on macOS 15+)
- Python 3.12 or higher
- yabai window manager
Installing yabai
brew install koekeishiya/formulae/yabai
yabai --start-service
Installation
Method 1: Install from GitHub (Recommended)
Using uv:
uv pip install git+https://github.com/huegli/capture-win-mcp.git
Using pip:
pip install git+https://github.com/huegli/capture-win-mcp.git
Method 2: Install from PyPI
Once published to PyPI:
# Using uv
uv pip install capture-win-mcp
# Using pip
pip install capture-win-mcp
Method 3: Install from Source (For Development)
# Clone the repository
git clone https://github.com/huegli/capture-win-mcp.git
cd capture-win-mcp
# Create virtual environment
uv venv # or: python3 -m venv venv
source .venv/bin/activate
# Install in editable mode
uv pip install -e . # or: pip install -e .
Usage
As an MCP Server
Claude Desktop Configuration
Edit ~/Library/Application Support/Claude/claude_desktop_config.json:
If installed via pip/uv (recommended):
{
"mcpServers": {
"capture-win": {
"command": "capture-win-mcp"
}
}
}
If running from source directory:
{
"mcpServers": {
"capture-win": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/capture-win-mcp",
"run",
"capture-win-mcp"
]
}
}
}
If using a specific Python environment:
{
"mcpServers": {
"capture-win": {
"command": "/path/to/venv/bin/capture-win-mcp"
}
}
}
After adding the configuration, restart Claude Desktop for the changes to take effect.
Available Tools
list_windows
Lists all windows organized by macOS Space.
Parameters:
format(optional): Output format -"json"(default) or"summary"
Example:
{
"format": "summary"
}
Returns: Window and Space information including:
- Space index, label, visibility status
- Window ID, title, app name, position, size
- Window counts per Space
capture_window
Captures a screenshot of a specific window.
Parameters:
window_id(required): The window ID to capture (get this fromlist_windows)include_shadow(optional): Include window shadow in capture (default:true)
Example:
{
"window_id": 12345,
"include_shadow": false
}
Returns: Base64-encoded PNG image of the window
Standalone Usage
You can also use the original window tracking functionality:
# Show windows by space
python main.py
# Show spaces summary
python main.py --spaces
# Export to JSON
python main.py --export output.json
Development
# Create virtual environment
python3 -m venv venv
source venv/bin/activate
# Install in development mode
pip install -e .
# Run the MCP server
python -m capture_win_mcp.server
Architecture
capture_win_mcp/tracker.py: EnhancedSpaceTracker class that interfaces with yabaicapture_win_mcp/server.py: MCP server implementation with toolsmain.py: Standalone CLI tool for window tracking
Troubleshooting
"yabai not found" error
Make sure yabai is installed and running:
brew install koekeishiya/formulae/yabai
yabai --start-service
Window capture fails
- Ensure the window ID is valid (use
list_windowsfirst) - Check that macOS Screen Recording permissions are granted
- Some system windows may not be capturable
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。