CardPilot Remote MCP Server
Provides tools to fetch and analyze credit card data with filtering options for banks, categories, and user personas. It also offers access to educational guides to assist in making informed financial recommendations.
README
CardPilot Remote MCP Server
This is a remote MCP (Model Context Protocol) server for CardPilot. It exposes tools to fetch and analyze credit card data.
Server URL
Public URL: https://mcp.cardpilot.ca/sse
Note: This server uses a custom domain to ensure compatibility with OpenAI Agent Builder.
Available Tools
1. get-cards
Fetches a list of credit cards with detailed metadata, suitable for ranking and comparison.
Input parameters:
| Parameter | Type | Description |
|---|---|---|
sort |
string (enum) |
Sort criteria: recommended, welcome_offer, interest_rate, annual_fee, net_value |
direction |
string (enum) |
Sort direction: asc, desc |
ids |
string |
Comma-separated list of card IDs (e.g., card-a,card-b) |
bank |
string |
Filter by bank name (e.g., "TD", "RBC") |
category |
string |
Filter by category (e.g., "travel", "cash back") |
noFee |
boolean |
Set to true to filter for no-annual-fee cards |
limit |
number |
Maximum number of cards to return (default: 5) |
persona |
string (enum) |
Target persona for tailored ranking: average, student, newcomer, premium |
Output structure:
{
"cards": [
{
"cardId": "string",
"name": "string",
"bank": "string",
"annualFee": number,
"score": number,
"details": { "rewards": number, "perks": number, "fees": number, ... }
}
],
"meta": { "total": number, "sort": "string", "direction": "string" }
}
2. get-guides
Fetches a list of educational guide metadata. This tool is optimized for chatbots to provide links to full articles.
Input parameters: None
Output structure:
{
"guides": [
{
"slug": "string",
"title": "string",
"intro": "string",
"icon": "string (emoji)",
"url": "string"
}
]
}
Agent System Prompt
If you are using this MCP server with an LLM Agent (like OpenAI Custom GPT), add the following to your System Instructions:
You are an expert credit card advisor powered by CardPilot data.
1. **Card Recommendations**:
- ALWAYS use the `get-cards` tool to fetch real-time data before making recommendations.
- Set `limit=5` by default to ensure concise recommendations.
- If the user specifies or asks for a specific persona (e.g., student, newcomer), set the `persona` parameter (e.g., `persona="student"`).
- Use the `sort` parameter to align with user priorities (e.g., `sort="annual_fee"` for cheap cards).
- Use filters like `bank="TD"` or `category="travel"` to narrow down results.
- For "no fee" requests, explicitly set `noFee=true`.
- When presenting cards, list the Name, Annual Fee, Welcome Bonus, and a brief "Why it fits" explanation.
- Link the card name to the `applyUrl` or CardPilot detail page if available.
2. **Educational Content**:
- If a user asks general questions (e.g., "Cash back vs Points"), use `get-guides` to see if there is a relevant article.
- Provide the answer based on the guide's `intro` and encourage the user to read the full guide by providing the `url`.
3. **General Rules**:
- Do not make up card details. If data is missing, state that.
- Be concise and helpful.
How to Use
OpenAI Agent Builder
- Create a new Agent.
- Under Actions, click Add Action.
- Select "Add from URL".
- Enter:
https://mcp.cardpilot.ca/sse - It should load the
get-cardstool immediately.
Cloudflare AI Playground
- Go to https://playground.ai.cloudflare.com/
- Enter the server URL:
https://mcp.cardpilot.ca/sse - Click Connect.
Claude Desktop
Add the following to your claude_desktop_config.json:
{
"mcpServers": {
"cardpilot": {
"command": "npx",
"args": [
"-y",
"mcp-remote",
"https://mcp.cardpilot.ca/sse"
]
}
}
}
Troubleshooting
OpenAI 424 Error ("Unable to load tools")
If you see this error, ensure you are using the Custom Domain URL (mcp.cardpilot.ca).
OpenAI blocks generic .workers.dev domains for MCP servers.
Local Development
To test locally:
- Install dependencies:
npm install
- Start local server:
npm start
(Runs on port 8787)
- Expose via Ngrok (Required for OpenAI testing):
ngrok http 8787
Use the Ngrok URL (e.g., https://xxxx.ngrok-free.app/sse) in Agent Builder.
Deployment
Deploy to Cloudflare Workers:
npm run deploy
The server will be live at https://mcp.cardpilot.ca/sse.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。