CCXT MCP Server

CCXT MCP Server

A Model Context Protocol server that enables LLMs to interact with cryptocurrency exchanges through CCXT, allowing for tasks like fetching balances, market data, creating orders, and trading operations in a standardized way.

Category
访问服务器

README

CCXT MCP Server

This project provides a Model Context Protocol (MCP) server that exposes various functions from the CCXT library as tools for Large Language Models (LLMs).

It allows LLMs to interact with cryptocurrency exchanges for tasks like fetching balances, market data, creating orders, and more, in a standardized and asynchronous way.

This server is built using FastMCP, which simplifies the process of creating MCP servers in Python.

Features

  • CCXT Integration: Wraps common CCXT functions for exchange interaction.
  • Asynchronous: Built using asyncio and ccxt.async_support for efficient non-blocking operations.
  • Clear Tool Definitions: Uses typing.Annotated and pydantic.Field for clear parameter descriptions and constraints, making it easier for LLMs (and developers) to understand and use the tools.
  • Authentication Handling: Supports API key, secret, and passphrase authentication for private endpoints.
  • Public & Private Tools: Provides separate tools for public market data and private account actions.

Installation

  1. Clone the repository (if you haven't already):

    git clone <your-repo-url> # Replace with your repository URL
    cd ccxt-mcp-server
    
  2. Create and activate a virtual environment (recommended):

    python -m venv .venv
    source .venv/bin/activate # On Windows use `.venv\Scripts\activate`
    
  3. Install dependencies: The required libraries are listed in requirements.txt. You can install them using pip or uv.

    • Using pip:
      pip install -r requirements.txt
      
    • Using uv (if installed):
      uv pip install -r requirements.txt
      # Or, if you prefer uv's environment management:
      # uv sync
      

Running the Server

Once the dependencies are installed, you can run the MCP server directly:

python mcp_server.py

You should see output indicating the server has started, similar to:

Starting CCXT MCP Server (Async with Annotated Params and Tool Metadata)...
# ... (FastMCP server startup logs)

The server will then be available for MCP clients to connect to (typically on a default port managed by FastMCP, unless configured otherwise).

Available MCP Tools

This server exposes the following tools, categorized by whether they require API authentication.

Tools Requiring API Authentication (Private)

  • fetch_account_balance: Fetches the current account balance.
  • fetch_deposit_address: Fetches the deposit address for a currency.
  • withdraw_cryptocurrency: Withdraws cryptocurrency to a specified address.
  • fetch_open_positions: Fetches open positions (primarily for futures/derivatives).
  • set_trading_leverage: Sets leverage for a trading symbol (primarily for futures).
  • create_spot_limit_order: Places a new spot limit order.
  • create_spot_market_order: Places a new spot market order.
  • create_futures_limit_order: Places a new futures limit order.
  • create_futures_market_order: Places a new futures market order.
  • cancel_order: Cancels an existing open order.
  • fetch_order_history: Fetches the history of orders (open/closed).
  • fetch_my_trade_history: Fetches the history of trades executed by the user.

Tools for Public Data (No Authentication Required)

  • fetch_ohlcv: Fetches historical OHLCV (candlestick) data.
  • fetch_funding_rate: Fetches the funding rate for a perpetual futures contract.
  • fetch_long_short_ratio: Fetches the long/short ratio (requires exchange-specific params).
  • fetch_option_contract_data: Fetches market data for an options contract.
  • fetch_market_ticker: Fetches the latest price ticker data for a symbol.
  • fetch_public_market_trades: Fetches recent public trades for a symbol.

Each tool has detailed parameter descriptions available via the MCP protocol itself, thanks to the use of Annotated and pydantic.Field.

Usage Notes

  • Futures/Options: When using tools related to futures or options (e.g., fetch_open_positions, create_futures_limit_order, fetch_funding_rate), ensure you correctly configure the CCXT client via the params argument, specifically passing {'options': {'defaultType': 'future'}} (or 'swap', 'option' as needed) if the exchange requires it or doesn't default to the desired market type.
  • fetch_long_short_ratio: This is not a standard CCXT unified method. You must provide the specific exchange method name and its parameters within the params argument (e.g., params={'method_name': 'fapiPublicGetGlobalLongShortAccountRatio', 'method_params': {'symbol': 'BTCUSDT', 'period': '5m'}} for Binance futures).
  • Error Handling: Tools return a dictionary with an "error" key if an issue occurs during the CCXT call.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选