Character Counter MCP Server
Provides a tool to count occurrences of specific characters in text, serving as a simple example of building MCP servers with FastMCP and Python.
README
Character Counter MCP Server - Python Quickstart
A simple example of creating an MCP server using FastMCP and Python, designed to work with Smithery.
What This Does
This server provides a character counter tool called count_character that counts how many times a specific character appears in a given text. You'll test it using the Smithery Playground for interactive development.
Prerequisites
- Python 3.12 or higher
- A Python package manager (uv recommended, but pip, poetry, etc. also work)
- Node.js and npx (optional, for Smithery Playground)
Quick Start
-
Clone the repository:
git clone https://github.com/smithery-ai/smithery-cookbook.git cd smithery-cookbook/servers/python/quickstart -
Install dependencies:
With uv (recommended):
uv syncWith poetry:
poetry installWith pip:
pip install -r requirements.txt -
Run the server:
You have two options:
Option A: Just run the server
# With uv uv run smithery dev # or use the shorter script alias: uv run dev # With poetry poetry run smithery dev # or use the shorter script alias: poetry run dev # With pip (after installing dependencies) smithery devThis starts the MCP server on
http://localhost:8081and keeps it running.Option B: Run server + open playground (recommended for testing)
# With uv uv run smithery playground # or use the shorter script alias: uv run playground # With poetry poetry run smithery playground # or use the shorter script alias: poetry run playground # With pip (after installing dependencies) smithery playgroundThis starts the MCP server AND automatically opens the Smithery Playground in your browser where you can:
- Interact with your MCP server in real-time
- Test the
count_charactertool with different text and characters - See the complete request/response flow
- Debug and iterate on your MCP tools quickly
Testing the Character Counter
Try asking: "How many r's are in strawberry?"
- Deploy to Smithery:
To deploy your MCP server:
- Push your code to GitHub (make sure to include the
smithery.yaml) - Connect your repository at https://smithery.ai/new
- Push your code to GitHub (make sure to include the
Your server will be available over HTTP and ready to use with any MCP-compatible client!
Stopping the Server
Press Ctrl+C in the terminal to stop the server.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。