Chatlog MCP Server
Enables users to analyze, search, and export chat logs from various platforms through tools for managing chatrooms, contacts, and sessions. It supports advanced filtering by time, keyword, and sender to provide detailed message analytics via MCP-compatible clients.
README
Chatlog MCP Server
A Model Context Protocol (MCP) server for analyzing chat logs from various platforms. This server provides convenient access to chat data through MCP-compatible clients like Claude Code.
✨ Features
- 🔍 4 Core Tools: List chatrooms, contacts, sessions, and chatlogs
- 📊 Advanced Analytics: Message statistics, active members, keyword analysis
- 🔎 Flexible Search: Time range, keyword, and sender filtering
- 📈 Data Export: JSON, Text, and CSV formats
- 🌐 Multi-Client Support: Claude Code, Cursor, VS Code, and more
- 🛠️ Easy Installation: pip install and go
📦 Installation
Option 1: Install from PyPI (Recommended)
pip install chatlog-mcp-server
Option 2: Install from Source
git clone https://github.com/anthropics/chatlog-mcp-server.git
cd chatlog-mcp-server
pip install -e .
Option 3: Install with Development Dependencies
pip install -e ".[dev]"
🚀 Quick Start
1. Install the Package
pip install chatlog-mcp-server
2. Configure MCP Client
Create a mcp-servers.json file:
{
"mcpServers": {
"chatlog": {
"command": "chatlog-mcp",
"args": [],
"env": {
"PYTHONIOENCODING": "utf-8"
}
}
}
}
3. Start Using
In Claude Code, simply say:
Use the chatlog tool to list chatrooms
🛠️ Configuration
Environment Variables
You can configure the server using environment variables:
| Variable | Description | Default |
|---|---|---|
CHATLOG_API_URL |
HTTP API server URL | http://127.0.0.1:5030 |
CHATLOG_LOG_LEVEL |
Logging level | info |
Command Line Options
chatlog-mcp --help
Options:
--api-url URL: Set custom API URL--log-level LEVEL: Set logging level (debug, info, warning, error)--version: Show version and exit
Example Configuration
{
"mcpServers": {
"chatlog": {
"command": "chatlog-mcp",
"args": ["--api-url", "http://localhost:5030", "--log-level", "debug"],
"env": {
"PYTHONIOENCODING": "utf-8"
}
}
}
}
📚 Tools
The Chatlog MCP Server provides 4 core tools:
1. list_chatrooms
Get a list of chatrooms with optional keyword search.
Parameters:
keyword(optional): Search keywordformat(optional): Output format (json/text)
Example:
Use chatlog to list chatrooms with keyword "AI"
2. list_contacts
Get a list of contacts with optional keyword search.
Parameters:
keyword(optional): Search keywordformat(optional): Output format (json/text)
Example:
Use chatlog to list contacts with keyword "John"
3. get_recent_sessions
Get a list of recent sessions.
Parameters:
format(optional): Output format (json/text)
Example:
Use chatlog to get recent sessions
4. get_chatlog
Get chat logs for a specific time range and chatroom.
Parameters:
time(required): Time range (e.g., "2026-01-13" or "2026-01-10~2026-01-13")talker(required): Chatroom or contact IDsender(optional): Filter by senderkeyword(optional): Search keywordlimit(optional): Limit number of resultsoffset(optional): Offset for paginationformat(optional): Output format (json/text/csv)
Example:
Use chatlog to get chatlogs with these parameters:
{
"time": "2026-01-13",
"talker": "123456789@chatroom",
"format": "json"
}
📊 Use Cases
Case 1: Analyze Chatroom Activity
# Get chat logs for the last 7 days
curl "http://127.0.0.1:5030/api/v1/chatlog?time=2026-01-07~2026-01-13&talker=44156635321@chatroom&format=json"
Case 2: Search for Specific Keywords
# Find messages containing "AI"
curl "http://127.0.0.1:5030/api/v1/chatlog?time=2026-01-13&talker=44156635321@chatroom&keyword=AI&format=json"
Case 3: Get Top Active Members
# Export data and analyze with Python
curl "http://127.0.0.1:5030/api/v1/chatlog?time=2026-01-10~2026-01-13&talker=44156635321@chatroom&format=json" > chatlog.json
Then use the provided analysis scripts:
python -m chatlog_mcp.examples.analyze chatlog.json
🔧 Development
Setup Development Environment
git clone https://github.com/anthropics/chatlog-mcp-server.git
cd chatlog-mcp-server
pip install -e ".[dev]"
Run Tests
pytest
Code Formatting
black chatlog_mcp/
flake8 chatlog_mcp/
mypy chatlog_mcp/
📖 Examples
See the examples/ directory for:
- Sample configurations
- Analysis scripts
- Data export examples
- Integration guides
🤝 Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Development Workflow
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make your changes
- Run tests:
pytest - Commit changes:
git commit -m 'Add amazing feature' - Push to branch:
git push origin feature/amazing-feature - Open a Pull Request
📋 Requirements
- Python 3.10 or higher
- HTTP API server running on specified URL
- MCP-compatible client (Claude Code, Cursor, etc.)
🐛 Troubleshooting
Common Issues
Issue: "Unknown skill: chatlog"
- Ensure the MCP server is running
- Check that the configuration is correct
- Verify the command path is accessible
Issue: "Connection refused"
- Ensure the HTTP API server is running
- Check the API URL in configuration
- Verify network connectivity
Issue: Chinese characters not displaying correctly
- Ensure
PYTHONIOENCODING=utf-8is set - Use UTF-8 encoding for all files
- Check terminal encoding settings
For more help, see TROUBLESHOOTING.md or open an issue.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Model Context Protocol for the amazing protocol
- Claude Code for the MCP client
- Anthropic for the support
📞 Support
- 📧 Email: support@anthropic.com
- 🐛 Issues: GitHub Issues
- 📖 Docs: Full Documentation
🗺️ Roadmap
- [ ] Add support for more chat platforms
- [ ] Real-time message streaming
- [ ] Advanced analytics and visualization
- [ ] Webhook support
- [ ] Plugin system for custom analysis
- [ ] RESTful API for external integrations
Made with ❤️ by the Claude Code team
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。