Chatlog MCP Server

Chatlog MCP Server

Enables users to analyze, search, and export chat logs from various platforms through tools for managing chatrooms, contacts, and sessions. It supports advanced filtering by time, keyword, and sender to provide detailed message analytics via MCP-compatible clients.

Category
访问服务器

README

Chatlog MCP Server

PyPI version Python 3.10+ License: MIT

A Model Context Protocol (MCP) server for analyzing chat logs from various platforms. This server provides convenient access to chat data through MCP-compatible clients like Claude Code.

✨ Features

  • 🔍 4 Core Tools: List chatrooms, contacts, sessions, and chatlogs
  • 📊 Advanced Analytics: Message statistics, active members, keyword analysis
  • 🔎 Flexible Search: Time range, keyword, and sender filtering
  • 📈 Data Export: JSON, Text, and CSV formats
  • 🌐 Multi-Client Support: Claude Code, Cursor, VS Code, and more
  • 🛠️ Easy Installation: pip install and go

📦 Installation

Option 1: Install from PyPI (Recommended)

pip install chatlog-mcp-server

Option 2: Install from Source

git clone https://github.com/anthropics/chatlog-mcp-server.git
cd chatlog-mcp-server
pip install -e .

Option 3: Install with Development Dependencies

pip install -e ".[dev]"

🚀 Quick Start

1. Install the Package

pip install chatlog-mcp-server

2. Configure MCP Client

Create a mcp-servers.json file:

{
  "mcpServers": {
    "chatlog": {
      "command": "chatlog-mcp",
      "args": [],
      "env": {
        "PYTHONIOENCODING": "utf-8"
      }
    }
  }
}

3. Start Using

In Claude Code, simply say:

Use the chatlog tool to list chatrooms

🛠️ Configuration

Environment Variables

You can configure the server using environment variables:

Variable Description Default
CHATLOG_API_URL HTTP API server URL http://127.0.0.1:5030
CHATLOG_LOG_LEVEL Logging level info

Command Line Options

chatlog-mcp --help

Options:

  • --api-url URL: Set custom API URL
  • --log-level LEVEL: Set logging level (debug, info, warning, error)
  • --version: Show version and exit

Example Configuration

{
  "mcpServers": {
    "chatlog": {
      "command": "chatlog-mcp",
      "args": ["--api-url", "http://localhost:5030", "--log-level", "debug"],
      "env": {
        "PYTHONIOENCODING": "utf-8"
      }
    }
  }
}

📚 Tools

The Chatlog MCP Server provides 4 core tools:

1. list_chatrooms

Get a list of chatrooms with optional keyword search.

Parameters:

  • keyword (optional): Search keyword
  • format (optional): Output format (json/text)

Example:

Use chatlog to list chatrooms with keyword "AI"

2. list_contacts

Get a list of contacts with optional keyword search.

Parameters:

  • keyword (optional): Search keyword
  • format (optional): Output format (json/text)

Example:

Use chatlog to list contacts with keyword "John"

3. get_recent_sessions

Get a list of recent sessions.

Parameters:

  • format (optional): Output format (json/text)

Example:

Use chatlog to get recent sessions

4. get_chatlog

Get chat logs for a specific time range and chatroom.

Parameters:

  • time (required): Time range (e.g., "2026-01-13" or "2026-01-10~2026-01-13")
  • talker (required): Chatroom or contact ID
  • sender (optional): Filter by sender
  • keyword (optional): Search keyword
  • limit (optional): Limit number of results
  • offset (optional): Offset for pagination
  • format (optional): Output format (json/text/csv)

Example:

Use chatlog to get chatlogs with these parameters:
{
  "time": "2026-01-13",
  "talker": "123456789@chatroom",
  "format": "json"
}

📊 Use Cases

Case 1: Analyze Chatroom Activity

# Get chat logs for the last 7 days
curl "http://127.0.0.1:5030/api/v1/chatlog?time=2026-01-07~2026-01-13&talker=44156635321@chatroom&format=json"

Case 2: Search for Specific Keywords

# Find messages containing "AI"
curl "http://127.0.0.1:5030/api/v1/chatlog?time=2026-01-13&talker=44156635321@chatroom&keyword=AI&format=json"

Case 3: Get Top Active Members

# Export data and analyze with Python
curl "http://127.0.0.1:5030/api/v1/chatlog?time=2026-01-10~2026-01-13&talker=44156635321@chatroom&format=json" > chatlog.json

Then use the provided analysis scripts:

python -m chatlog_mcp.examples.analyze chatlog.json

🔧 Development

Setup Development Environment

git clone https://github.com/anthropics/chatlog-mcp-server.git
cd chatlog-mcp-server
pip install -e ".[dev]"

Run Tests

pytest

Code Formatting

black chatlog_mcp/
flake8 chatlog_mcp/
mypy chatlog_mcp/

📖 Examples

See the examples/ directory for:

  • Sample configurations
  • Analysis scripts
  • Data export examples
  • Integration guides

🤝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Development Workflow

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Run tests: pytest
  5. Commit changes: git commit -m 'Add amazing feature'
  6. Push to branch: git push origin feature/amazing-feature
  7. Open a Pull Request

📋 Requirements

  • Python 3.10 or higher
  • HTTP API server running on specified URL
  • MCP-compatible client (Claude Code, Cursor, etc.)

🐛 Troubleshooting

Common Issues

Issue: "Unknown skill: chatlog"

  • Ensure the MCP server is running
  • Check that the configuration is correct
  • Verify the command path is accessible

Issue: "Connection refused"

  • Ensure the HTTP API server is running
  • Check the API URL in configuration
  • Verify network connectivity

Issue: Chinese characters not displaying correctly

  • Ensure PYTHONIOENCODING=utf-8 is set
  • Use UTF-8 encoding for all files
  • Check terminal encoding settings

For more help, see TROUBLESHOOTING.md or open an issue.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📞 Support

🗺️ Roadmap

  • [ ] Add support for more chat platforms
  • [ ] Real-time message streaming
  • [ ] Advanced analytics and visualization
  • [ ] Webhook support
  • [ ] Plugin system for custom analysis
  • [ ] RESTful API for external integrations

Made with ❤️ by the Claude Code team

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选