Chemspace MCP Server
Enables AI agents to search the Chemspace API for synthesizable building blocks and screening compounds using exact matches, substructure searches, and similarity searches by SMILES strings.
README
chemspace-mcp
A Model Context Protocol (MCP) server that provides a wrapper for the Chemspace API, enabling AI agents to search for synthesizable building blocks and screening compounds through exact, substructure, and similarity searches.
Features
- Exact Search: Find exact molecular matches by SMILES
- Substructure Search: Find compounds containing a specific substructure
- Similarity Search: Find structurally similar compounds by SMILES
- Multiple Product Categories: Search across in-stock and make-on-demand compounds
- Global Shipping: Specify shipping countries with ISO country codes
Requirements
- Python 3.13+
- Chemspace API key
Installation
Prerequisites
Install uv (universal Python package installer):
# macOS
brew install uv
# Linux/WSL2
curl -LsSf https://astral.sh/uv/install.sh | sh
Setup
-
Clone the repository and navigate to the project directory
-
Set your Chemspace API key as an environment variable:
export CHEMSPACE_API_KEY="your-api-key-here" -
Install dependencies and run:
uv run chemspace-mcp
Configuration
For use with FastAgent
Configure example/fastagent.secrets.yaml:
anthropic:
api_key: your-anthropic-api-key
mcp:
servers:
chemspace:
env:
CHEMSPACE_API_KEY: your-chemspace-api-key
Then run the example interface with FastAgent:
cd example
uv run --extra agent agent.py
Usage
The MCP server exposes the following tools:
search_exact
Searches for exact molecular matches by SMILES string.
Parameters:
smiles(string): The SMILES string to search forshipToCountry(string): Two-letter ISO country code (default: "US")count(integer): Maximum results per page (default: 10)page(integer): Page number for pagination (default: 1)categories(list): Product categories to search:CSSB: In-stock building blocksCSSS: In-stock screening compoundsCSMB: Make-on-demand building blocksCSMS: Make-on-demand screening compoundsCSCS: Custom requests
search_substructure
Searches for compounds containing a specific substructure.
Parameters: Same as search_exact
search_similarity
Searches for structurally similar compounds.
Parameters: Same as search_exact
Project Structure
chemspace-mcp/
├── src/
│ └── chemspace_mcp/
│ ├── __init__.py # Entry point and MCP server initialization
│ ├── tools.py # Tool definitions for chemical searches
│ └── tokenmanager.py # Token management for API authentication
├── example/
│ ├── agent.py # Example FastAgent integration
│ ├── fastagent.config.yaml # FastAgent configuration
│ └── fastagent.secrets.yaml # Secrets configuration (not in version control)
├── pyproject.toml # Project metadata and dependencies
└── README.md # This file
Development
Dependencies
fastmcp>=2.13.1: Core MCP server frameworkfast-agent-mcp>=0.2.25: FastAgent integration
License
MIT License
Support
For issues or questions, please open an issue on the project repository.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。