Chess MCP Server
Enables playing chess games with legal move validation and AI opponent moves powered by the Stockfish engine. Supports multiple concurrent games and provides moves in UCI format.
README
Chess MCP Server
A Model Context Protocol (MCP) server that provides a chess-playing environment backed by the Stockfish engine. Designed for use with LLM clients (like Claude Desktop) to ensure all chess moves are legal and engine-calculated.
Features
- Legal Move Validation: All moves are validated against chess rules
- Stockfish Integration: Uses the Stockfish chess engine for AI moves
- MCP Protocol: Communicates via JSON-RPC over stdio
- In-Memory Game State: Maintains multiple concurrent games
Installation
pip install chess-mcp
You'll also need to install Stockfish:
- Windows: Download from Stockfish website
- macOS:
brew install stockfish - Linux:
sudo apt install stockfish(or equivalent)
Usage
-
Set the
STOCKFISH_PATHenvironment variable to the path of your Stockfish executable:export STOCKFISH_PATH=/path/to/stockfish -
Run the server:
python -m chess_mcp
MCP Tools
new_game()
Starts a new chess game from the standard initial position.
Returns:
game_id: Unique identifier for the gamefen: Current position in FEN notationlegal_moves: List of all legal moves in UCI format
make_move(game_id, move_uci)
Applies a human move to the game. The move must be in UCI format (e.g., "e2e4").
Parameters:
game_id: Identifier of the active gamemove_uci: Move in UCI format
Returns:
ok: Whether the move was legal and appliedfen: Updated board position (if move was legal)legal_moves: Updated list of legal moves
engine_move(game_id, depth=14)
Asks Stockfish to calculate and play one move for the side to move.
Parameters:
game_id: Identifier of the active gamedepth: Search depth for Stockfish (higher = stronger but slower)
Returns:
engine_move: The move played by Stockfish in UCI formatfen: Updated board position after the movelegal_moves: Updated list of legal moves
Development
To set up for development:
git clone https://github.com/yourusername/chess-mcp.git
cd chess-mcp
pip install -e .
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。