Chiro ERP - Issue Pipeline Orchestrator

Chiro ERP - Issue Pipeline Orchestrator

Automates GitHub issue-to-PR workflows using specialized AI agents (analyst, architect, developer, tester, reviewer) that analyze requirements, design solutions, implement code, generate tests, and perform code reviews with HIPAA compliance checks.

Category
访问服务器

README

Chiro ERP - Issue Pipeline Orchestrator

MCP Server for automated issue-to-PR pipeline with role-based AI agents.

Overview

This MCP server automates the software development workflow by processing GitHub issues through a multi-stage pipeline with specialized AI agents:

  • Analyst Agent: Analyzes requirements and creates user stories
  • Architect Agent: Designs technical solutions following DDD/CQRS patterns
  • Developer Agent: Implements features in C#
  • Tester Agent: Creates comprehensive tests
  • Reviewer Agent: Reviews code for quality and compliance

Features

  • 🤖 Automated issue-to-PR workflow
  • 🎯 Role-based AI agents with domain expertise
  • 🏗️ Architecture-aware (follows your ADRs and patterns)
  • 🔒 HIPAA compliance checks
  • 🧪 Automatic test generation
  • 👀 Code review automation
  • 🎛️ Human approval gates for complex changes
  • 📊 Complexity analysis
  • 🔄 Retry and approval mechanisms

Setup

1. Install Dependencies

cd mcp-servers/issue-pipeline-orchestrator
npm install

2. Configure Environment

Copy .env.example to .env and fill in your credentials:

cp .env.example .env

Required environment variables:

  • GITHUB_TOKEN: GitHub Personal Access Token with repo access
  • GITHUB_OWNER: Your GitHub username or organization
  • GITHUB_REPO: Repository name
  • OPENAI_API_KEY: OpenAI API key

3. Build

npm run build

4. Configure MCP in VS Code

Add to your VS Code settings (.vscode/settings.json):

{
  "mcpServers": {
    "chiro-erp-pipeline": {
      "command": "node",
      "args": [
        "c:/Users/PC/coding/mvp/mcp-servers/issue-pipeline-orchestrator/dist/index.js"
      ],
      "env": {
        "GITHUB_TOKEN": "your_token",
        "GITHUB_OWNER": "your_username",
        "GITHUB_REPO": "mvp",
        "OPENAI_API_KEY": "your_key"
      }
    }
  }
}

Usage

Process an Issue Automatically

// In GitHub Copilot Chat
@workspace /tools process_issue --issueNumber 42

Check Pipeline Status

@workspace /tools get_pipeline_status --issueNumber 42

Analyze Issue Complexity

@workspace /tools analyze_issue_complexity --issueNumber 42

Approve a Stage

@workspace /tools approve_pipeline_stage --issueNumber 42 --stage "architecture" --approved true

Retry a Failed Stage

@workspace /tools retry_pipeline_stage --issueNumber 42 --stage "implementation"

GitHub Actions Integration

Create .github/workflows/auto-pipeline.yml:

name: Automated Issue Pipeline

on:
  issues:
    types: [labeled]

jobs:
  auto-implement:
    if: contains(github.event.issue.labels.*.name, 'auto-implement')
    runs-on: ubuntu-latest
    
    steps:
      - uses: actions/checkout@v3
      
      - name: Setup Node.js
        uses: actions/setup-node@v3
        with:
          node-version: '20'
      
      - name: Install MCP Server
        run: |
          cd mcp-servers/issue-pipeline-orchestrator
          npm install
          npm run build
      
      - name: Process Issue
        env:
          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
          GITHUB_OWNER: ${{ github.repository_owner }}
          GITHUB_REPO: ${{ github.event.repository.name }}
          OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
        run: |
          node mcp-servers/issue-pipeline-orchestrator/dist/index.js << EOF
          {
            "method": "tools/call",
            "params": {
              "name": "process_issue",
              "arguments": {
                "issueNumber": ${{ github.event.issue.number }}
              }
            }
          }
          EOF

Pipeline Stages

1. Analysis (Analyst Agent)

  • Extracts requirements from issue
  • Creates user stories
  • Defines acceptance criteria
  • Identifies dependencies

2. Architecture (Architect Agent)

  • Designs technical solution
  • Follows DDD/CQRS patterns
  • Updates ADRs if needed
  • Defines integration points

3. Implementation (Developer Agent)

  • Generates C# code
  • Follows project structure
  • Implements CQRS handlers
  • Creates domain events

4. Testing (Tester Agent)

  • Generates unit tests
  • Creates integration tests
  • Ensures test coverage
  • Tests edge cases

5. Code Review (Reviewer Agent)

  • Reviews code quality
  • Checks security issues
  • Validates HIPAA compliance
  • Provides feedback

Complexity Scoring

The system automatically analyzes issues and assigns complexity scores:

  • Low (0-4): Simple bugs, minor enhancements - auto-implement
  • Medium (5-9): Standard features - auto-implement with review
  • High (10+): Complex changes - requires human oversight

Human Approval Gates

Approval is automatically required for:

  • Breaking changes
  • Architectural decisions
  • Security-sensitive code
  • HIPAA compliance implications
  • High complexity scores

Customization

Adding New Agent Roles

Edit src/agents/roles.ts:

export const AGENT_ROLES: Record<string, AgentRole> = {
  // ... existing roles
  
  myCustomAgent: {
    name: "My Custom Agent",
    description: "Does something specific",
    systemPrompt: "You are...",
    tools: ["tool1", "tool2"],
    maxTokens: 2000,
    temperature: 0.3
  }
};

Modifying Pipeline Stages

Edit src/orchestrator.ts in the initializePipeline method.

Troubleshooting

Pipeline Stuck

Check the pipeline status and use retry:

@workspace /tools retry_pipeline_stage --issueNumber 42 --stage "implementation"

Rate Limits

The system respects GitHub and OpenAI rate limits. If you hit limits:

  • Reduce parallel processing
  • Add delays between stages
  • Use a higher-tier OpenAI plan

Agent Errors

Check agent outputs in GitHub issue comments. Common issues:

  • Insufficient context
  • Ambiguous requirements
  • Missing dependencies

Best Practices

  1. Label Issues Appropriately: Use labels like auto-implement, bug, enhancement to help complexity analysis

  2. Clear Issue Descriptions: Provide detailed requirements and acceptance criteria

  3. Review Generated PRs: Even with automation, human review is valuable

  4. Start Small: Begin with simple issues to calibrate the system

  5. Monitor Costs: Track OpenAI API usage as complex issues can use significant tokens

Security

  • Never commit .env file
  • Use GitHub Secrets for CI/CD
  • Rotate tokens regularly
  • Review security-sensitive changes manually

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选