Chris MCP

Chris MCP

A context provider that serves as an AI version of Chris's programming knowledge and practices. Enables AI utilities like Claude and Cline to search and access coding guidelines, rules, and context for JavaScript, TypeScript, React, and various development frameworks.

Category
访问服务器

README

Chris MCP

A context provider on how I program. Basically the AI version of me for AI utilities like cline.

1. Install

The following sections describe several ways to install this MCP.

Make sure you are using Node version 22.

1.1. Option 1: Using NPX

Run the following commands in the same folder your other MCP servers are.

$ mkdir chris-mcp
$ cd chris-mcp
$ npx --y chris-mcp fetch --output ./data
$ npx --y chris-mcp verify --output ./data
$ pwd

Copy the response from pwd and edit your MCP server configuration by following one of the options below.

1.1.1 Using NPX With Claude Desktop

Add the following configuration to your claude_desktop_config.json where [pwd] is the response from the pwd command earlier.

{
  "name": "github.com/cblanquera/mcp",
  "command": "npx",
  "args": [ 
    "-y", 
    "chris-mcp", 
    "serve", 
    "--input", 
    "[pwd]/data" 
  ]
}

1.1.2 Using NPX With Cline

Add the following configuration to your cline_mcp_settings.json where [pwd] is the response from the pwd command earlier.

{
  "mcpServers": {
    "github.com/cblanquera/mcp": {
      "command": "npx",
      "args": [ 
        "-y", 
        "chris-mcp", 
        "serve", 
        "--input", 
        "[pwd]/data" 
      ]
    }
  }
}

1.2. Option 2: Direct From the Repository

Run the following commands in the same folder your other MCP servers are.

$ git clone https://github.com/cblanquera/mcp.git chris-mcp
$ cd chris-mcp
$ npm i
$ npm run build
$ npm run fetch --output ./data
$ npm run verify --output ./data
$ pwd

Copy the response from pwd and edit your MCP server configuration by following one of the options below.

1.2.1. From the Repository With Claude Desktop

Add the following configuration to your claude_desktop_config.json.

{
  "name": "github.com/cblanquera/mcp",
  "command": "node",
  "args": [ 
    "[pwd]/dist/scripts/serve.js", 
    "--input", 
    "[pwd]/data" 
  ]
}

1.2.2. From the Repository With Cline

Add the following configuration to your cline_mcp_settings.json.

{
  "mcpServers": {
    "github.com/cblanquera/mcp": {
      "command": "node",
      "args": [ 
        "[pwd]/dist/scripts/serve.js", 
        "--input", 
        "[pwd]/data" 
      ]
    }
  }
}

1.3. From Prompt

  1. Copy and paste the following prompt.
Set up the MCP server from https://github.com/cblanquera/mcp while adhering to these MCP server installation rules:
- Start by loading the MCP documentation.
- Use "github.com/cblanquera/mcp" as the server name in cline_mcp_settings.json.
- Create the directory for the new MCP server before starting installation.
- Make sure you read the user's existing cline_mcp_settings.json file before editing it with this new mcp, to not overwrite any existing servers.
- Use commands aligned with the user's shell and operating system best practices.
- Once installed, demonstrate the server's capabilities by using one of its tools.
Here is the project's README to help you get started:
  1. Then paste in this README.

2. Usage

You can manually start the server like the following.

$ npm start --input [pwd]/data

Or you can run it manually like the following.

$ node [pwd]/dist/scripts/serve.js --input [pwd]/data

If you installed via npx, you can start the server like the following.

$ npx chris-mcp serve --input [pwd]/data

2.1. Fetching Updated Context

You can manually fetch and verify the context like the following.

$ npm run fetch --output [pwd]/data
$ npm run verify --output [pwd]/data

Or you can run it manually like the following.

$ node [pwd]/dist/scripts/fetch.js --output [pwd]/data
$ node [pwd]/dist/scripts/verify.js --output [pwd]/data

If you installed via npx, you can start the server like the following.

$ npx chris-mcp fetch --output [pwd]/data
$ npx chris-mcp verify --output [pwd]/data

2.2. Upgrading Search Model

The MCP uses Xenova/all-MiniLM-L6-v2 locally to determine the best search query term for the MCP. Think about it like random prompt → correct query → ask MCP. You can upgrade this to use your OpenAI key by adding OPENAI_HOST, OPENAI_KEY and EMBEDDING_MODEL environment variables in your MCP settings like the following.

{
  "name": "chris-context",
  "command": "node",
  "command": "npx",
  "args": [ 
    "-y", 
    "chris-mcp", 
    "serve", 
    "--input", 
    "[pwd]/data" 
  ],
  "env": {
    "OPENAI_HOST": "https://api.openai.com/v1",
    "OPENAI_KEY": "sk-xxx",
    "EMBEDDING_MODEL": "text-embedding-3-small"
  }
}

WARNING: OpenRouter doesn't support the /embeddings API endpoint. This is called when providing an OpenAI compatible host.

3. Maximizing Your Knowledge Base

Create a rule (markdown file) called Chris-MCP-Rule.md in your knowledge folder (ex. .clinerules) with the following context.

# Rule: Using the Chris MCP

- If the user mentions "chris" and asks about code formatting, coding styles, coding standards, documentation styles, testing styles, use the MCP tool `chris-context.search_context`.
- If the user asks for a compact summary of rules for code formatting, writing documentation, writing tests, use the MCP tool `chris-context.build_brief`.
- Always prefer these MCP tools over answering from memory.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选