Claude Code Control MCP
Enables programmatic execution of coding tasks and autonomous file operations using Claude AI. It allows agents to search codebases, run shell commands, and track file changes through the Model Context Protocol.
README
Claude Code Control MCP Server
Claude Code automation and control for agentic workflows.
Part of the Agentic System - a 24/7 autonomous AI framework with persistent memory.
Programmatic task execution using Claude AI for autonomous coding workflows.
Overview
The Claude Code Control MCP enables programmatic code task execution through the Model Context Protocol. It provides a bridge for AI agents and workflows to execute coding tasks using Claude Sonnet 4.5, with comprehensive file tracking, command execution, and status monitoring.
Features
- Programmatic Task Execution: Execute natural language coding tasks autonomously
- File Operations: Read, write, edit, and track file changes
- Code Search: Grep-like search across codebases
- Command Execution: Run shell commands with output capture
- Change Tracking: Monitor all file modifications during execution
- Status Monitoring: Real-time execution status and history
Architecture
┌─────────────────────────────────────────────────────────┐
│ MCP Client (Claude Code) │
└────────────────────┬────────────────────────────────────┘
│ MCP Protocol
┌────────────────────▼────────────────────────────────────┐
│ Claude Code Control MCP Server │
│ ┌──────────────┐ ┌───────────────┐ ┌─────────────┐ │
│ │ Server │ │ Executor │ │ Tracker │ │
│ │ (MCP) │ │ (Claude AI) │ │ (Files) │ │
│ └──────────────┘ └───────────────┘ └─────────────┘ │
└────────────────────┬────────────────────────────────────┘
│ Anthropic API
┌────────────────────▼────────────────────────────────────┐
│ Claude Sonnet 4.5 (Anthropic API) │
└─────────────────────────────────────────────────────────┘
Installation
- Install dependencies:
cd ${AGENTIC_SYSTEM_PATH:-/opt/agentic}/mcp-servers/claude-code-control-mcp
pip3 install -r requirements.txt
- Set API key:
export ANTHROPIC_API_KEY="sk-ant-..."
- Register with Claude Code:
Add to ~/.claude.json:
{
"mcpServers": {
"claude-code-control": {
"command": "python3",
"args": [
"${AGENTIC_SYSTEM_PATH:-/opt/agentic}/mcp-servers/claude-code-control-mcp/server.py"
],
"env": {
"ANTHROPIC_API_KEY": "sk-ant-..."
},
"disabled": false
}
}
}
- Restart Claude Code:
# Exit current session and restart
MCP Tools
execute_code_task
Execute a coding task using Claude AI with autonomous tool use.
Input:
{
"task_description": "Add error handling to the API endpoint in server.py",
"working_directory": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}/api",
"context_files": ["server.py", "tests/test_api.py"],
"max_iterations": 20
}
Output:
{
"success": true,
"task_description": "Add error handling...",
"working_directory": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}/api",
"iterations": 8,
"tool_uses": [
{
"tool": "read_file",
"input": {"path": "server.py"},
"result": "File content..."
}
],
"file_changes": {
"total_changes": 2,
"files_modified": ["server.py"],
"files_created": [],
"files_deleted": []
},
"duration_seconds": 12.5,
"final_message": "Successfully added error handling..."
}
read_codebase
Read and analyze multiple files using glob patterns.
Input:
{
"patterns": ["*.py", "src/**/*.ts"],
"working_directory": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}",
"max_files": 50
}
Output:
{
"files_read": 12,
"files": [
{
"path": "server.py",
"size": 2048,
"content": "#!/usr/bin/env python3..."
}
]
}
search_code
Search for code patterns across the codebase.
Input:
{
"query": "async def.*execute",
"working_directory": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}",
"file_pattern": "*.py",
"case_sensitive": true,
"max_results": 100
}
Output:
{
"query": "async def.*execute",
"total_matches": 5,
"matches": [
"executor.py:42:async def execute_task(...)",
"server.py:156:async def execute_command(...)"
]
}
modify_files
Modify multiple files with batch operations.
Input:
{
"changes": [
{
"path": "config.py",
"action": "write",
"content": "DEBUG = True\n"
},
{
"path": "server.py",
"action": "edit",
"old_content": "port = 8080",
"new_content": "port = 9000"
}
],
"working_directory": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}"
}
Output:
{
"modifications": [
{"path": "config.py", "status": "written"},
{"path": "server.py", "status": "edited"}
],
"file_changes": {
"total_changes": 2,
"files_created": ["config.py"],
"files_modified": ["server.py"]
}
}
run_commands
Execute shell commands with output capture.
Input:
{
"commands": [
"python3 -m pytest tests/",
"black --check *.py"
],
"working_directory": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}",
"timeout": 30
}
Output:
{
"command_results": [
{
"command": "python3 -m pytest tests/",
"exit_code": 0,
"stdout": "===== 5 passed in 2.5s =====",
"stderr": ""
},
{
"command": "black --check *.py",
"exit_code": 0,
"stdout": "All done! ✨",
"stderr": ""
}
]
}
get_execution_status
Get status of current or recent execution.
Input:
{
"include_history": true
}
Output:
{
"current_execution": {
"task_description": "Add error handling...",
"success": true,
"iterations": 8
},
"executor_initialized": true,
"execution_history": [...]
}
Usage Examples
Example 1: Automated Code Refactoring
# Using from Python with anthropic client
import anthropic
client = anthropic.Anthropic()
response = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=4096,
tools=[...], # MCP tools from claude-code-control
messages=[{
"role": "user",
"content": "Refactor the authentication module to use async/await"
}]
)
Example 2: Autonomous Bug Fixing
# Using from Claude Code
claude --prompt "Fix the memory leak in server.py using the claude-code-control MCP"
Example 3: Integration Testing
# Using from workflow automation
from anthropic import Anthropic
client = Anthropic()
# Execute task
result = await mcp_execute_tool(
"execute_code_task",
{
"task_description": "Add integration tests for the API endpoints",
"working_directory": "${AGENTIC_SYSTEM_PATH:-/opt/agentic}/api",
"context_files": ["server.py", "models.py"]
}
)
print(f"Tests created: {result['file_changes']['files_created']}")
Integration Points
Temporal Workflows
@workflow.defn
class CodeTaskWorkflow:
@workflow.run
async def run(self, task_description: str) -> dict:
# Execute code task via MCP
result = await workflow.execute_activity(
execute_via_mcp,
args=[task_description],
start_to_close_timeout=timedelta(minutes=5)
)
return result
n8n Workflows
Use HTTP Request node to call MCP server:
{
"method": "POST",
"url": "http://localhost:PORT/execute",
"body": {
"tool": "execute_code_task",
"arguments": {
"task_description": "{{$json.task}}"
}
}
}
Intelligent Agents
from intelligent_agents.sdk_agents import ClaudeAgent
agent = ClaudeAgent()
# Agent uses MCP tools automatically
result = agent.execute(
"Refactor authentication to use OAuth2",
mcp_tools=["claude-code-control"]
)
File Tracking
The MCP server tracks all file changes during execution:
- Created files: New files written
- Modified files: Existing files changed
- Deleted files: Files removed
- Read files: Files accessed for reading
Changes include:
- File hashes (SHA256)
- Size changes
- Timestamps
- Line change statistics (when available)
Error Handling
The server handles errors gracefully:
- Tool execution errors: Returned with error details
- File operation errors: Logged and returned to caller
- Command execution errors: Exit codes and stderr captured
- API errors: Anthropic API errors propagated with context
Security Considerations
- API Key Management: Store
ANTHROPIC_API_KEYsecurely - File Access: Limited to specified working directories
- Command Execution: Shell commands run with user permissions
- Input Validation: All inputs validated before execution
- Output Sanitization: Sensitive data filtered from outputs
Performance
- Typical task execution: 5-30 seconds
- File operations: < 1 second per file
- Code search: < 5 seconds for large codebases
- Memory usage: ~50-100MB during execution
Troubleshooting
Server won't start
# Check API key
echo $ANTHROPIC_API_KEY
# Test server directly
python3 server.py
# Check logs
tail -f ~/.claude/logs/mcp-servers.log
Tool execution fails
# Verify dependencies
pip3 list | grep anthropic
pip3 list | grep mcp
# Test executor
python3 test_executor.py
File tracking issues
# Check permissions
ls -la ${AGENTIC_SYSTEM_PATH:-/opt/agentic}/
# Verify working directory
pwd
Development
Running Tests
cd ${AGENTIC_SYSTEM_PATH:-/opt/agentic}/mcp-servers/claude-code-control-mcp
python3 test_server.py
Adding New Tools
- Add tool definition to
list_tools() - Implement handler in
call_tool() - Update documentation
- Add tests
Debugging
Enable debug logging:
logging.basicConfig(level=logging.DEBUG)
Roadmap
- [ ] Batch task execution
- [ ] Task queuing and scheduling
- [ ] Integration with enhanced-memory MCP
- [ ] Code analysis tools (complexity, coverage)
- [ ] Git integration (commit, push, PR creation)
- [ ] Multi-file refactoring support
- [ ] Streaming execution updates
- [ ] Web UI for monitoring
Contributing
Contributions welcome! Areas for improvement:
- Additional tool implementations
- Performance optimizations
- Enhanced error handling
- Documentation improvements
- Test coverage
License
Part of the agentic-system project. See main LICENSE file.
Support
For issues and questions:
- Check logs:
~/.claude/logs/ - Review MCP documentation: https://modelcontextprotocol.io
- Anthropic API docs: https://docs.anthropic.com
Related Documentation
Part of the MCP Ecosystem
This server integrates with other MCP servers for comprehensive AGI capabilities:
| Server | Purpose |
|---|---|
| enhanced-memory-mcp | 4-tier persistent memory with semantic search |
| agent-runtime-mcp | Persistent task queues and goal decomposition |
| agi-mcp | Full AGI orchestration with 21 tools |
| cluster-execution-mcp | Distributed task routing across nodes |
| node-chat-mcp | Inter-node AI communication |
| ember-mcp | Production-only policy enforcement |
See agentic-system-oss for the complete framework.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。