Claude Code Multi-Process MCP Server

Claude Code Multi-Process MCP Server

Enables asynchronous and parallel execution of Claude Code tasks across multiple sessions, allowing users to start background tasks and continue working immediately without blocking.

Category
访问服务器

README

Claude Code Multi-Process MCP Server

A FastMCP-based multi-process execution server for Claude Code that provides asynchronous task processing capabilities.

Features

  • Asynchronous Execution - Start background tasks and continue working immediately
  • Multi-Instance Parallelism - Run multiple Claude Code sessions simultaneously
  • Automatic Cleanup - Prevent zombie processes with automatic resource reclamation
  • Process Monitoring - Real-time task status and process information tracking
  • Task Management - Complete task lifecycle management

Quick Start

1. Install Dependencies

⚠️ Important: Due to macOS externally-managed-environment restrictions, you must use a virtual environment.

# Clone and navigate to project
cd <project-path>

# Create virtual environment
python3 -m venv venv

# Activate virtual environment and install dependencies
source venv/bin/activate
pip install -r requirements.txt

# Deactivate when done (optional)
deactivate

2. Configure Claude Code

Add to your ~/.claude/settings.json:

{
  "mcpServers": {
    "cc-multi-process": {
      "command": "/absolute/path/to/project/venv/bin/python3",
      "args": ["/absolute/path/to/project/main.py"],
      "description": "Claude Code Multi-Process MCP Server - Provides parallel task execution capabilities"
    }
  }
}

Critical Notes:

  • Use virtual environment Python path: /your/project/path/venv/bin/python3
  • Use absolute paths for both command and args
  • Replace /absolute/path/to/project with your actual project path
  • The virtual environment must contain the FastMCP dependencies

Example Configuration:

{
  "mcpServers": {
    "cc-multi-process": {
      "command": "/Users/username/git/cc-multi-process-mcp/venv/bin/python3",
      "args": ["/Users/username/git/cc-multi-process-mcp/main.py"],
      "description": "Claude Code Multi-Process MCP Server - Provides parallel task execution capabilities"
    }
  }
}

3. Restart Claude Code

Reload or restart Claude Code to load the MCP server. The server should appear in your available tools.

API Reference

execute_cc_task

Execute Claude Code task synchronously, blocks until completion.

Parameters:

  • prompt (required): Task description
  • working_dir (optional): Working directory
  • model (optional): "sonnet", "opus", or "haiku"
  • skip_permissions (optional): Skip permission checks (default: true)
  • timeout (optional): Timeout in seconds

Returns: JSON string containing execution results

start_cc_task_async

Start Claude Code task asynchronously, returns task ID immediately.

Parameters:

  • prompt (required): Task description
  • working_dir (optional): Working directory
  • model (optional): "sonnet", "opus", or "haiku"
  • skip_permissions (optional): Skip permission checks (default: true)
  • timeout (optional): Timeout in seconds

Returns: Task ID string

check_task_status

Check asynchronous task status.

Parameters:

  • task_id (required): Task ID

Returns: JSON string containing task status and results

list_active_tasks

List all currently active tasks.

Returns: JSON string containing active task list

cleanup_task

Clean up specified task and its related data.

Parameters:

  • task_id (required): Task ID to clean up

Returns: JSON string containing cleanup results

Usage Examples

Asynchronous Execution Example (Recommended)

# Start a long-running background task
task_id = start_cc_task_async(
    prompt="Analyze all Python files and generate a comprehensive report",
    working_dir="/path/to/project",
    model="sonnet",
    skip_permissions=True
)
# ✅ Returns immediately with Task ID: abc12345

# Continue your work while Claude Code runs in background
# ... do other things ...

# Check result when ready
result = check_task_status(task_id)

Parallel Execution Example

# Start multiple tasks simultaneously
task1 = start_cc_task_async(
    prompt="Generate unit tests for utils.py"
)

task2 = start_cc_task_async(
    prompt="Refactor database.py to use async/await"
)

task3 = start_cc_task_async(
    prompt="Add type hints to all functions in api.py"
)

# All three tasks run in parallel
# Check results when ready
result1 = check_task_status(task1)
result2 = check_task_status(task2)
result3 = check_task_status(task3)

Synchronous Execution Example

For simple tasks that need immediate results:

result = execute_cc_task(
    prompt="Write a Python function to validate email addresses",
    skip_permissions=True
)
# ⏳ Blocks until completion, then returns result

Task Management Example

# List all active tasks
active_tasks = list_active_tasks()

# Clean up specific task
cleanup_result = cleanup_task("task_id_here")

# Check task status
status = check_task_status("task_id_here")

Technical Implementation

Architecture

Framework: FastMCP + JSON-RPC over stdio Language: Python 3.6+ Storage: Filesystem-based task persistence (/tmp/cc_process_tasks/) Process Management: SIGCHLD signal handler prevents zombie processes Logging: Detailed logging to /tmp/cc_process_mcp.log

Core Components

  • TaskManager Class - Manages task lifecycle and processes
  • Asynchronous Process Management - Uses subprocess.Popen to create non-blocking child processes
  • Signal Handling - Automatic resource cleanup and zombie process reclamation
  • Filesystem State - Task result persistent storage

Design Decisions

  1. FastMCP-Based - Uses modern MCP framework instead of raw JSON-RPC implementation
  2. Filesystem Persistence - Task state stored in files, supports server restart
  3. Automatic Process Cleanup - Unix signal handling prevents resource leaks
  4. Comprehensive Logging - Complete execution logs for debugging and monitoring
  5. Task Isolation - Each task uses separate directory and process

Troubleshooting

Installation Issues

"externally-managed-environment" error?

  • This is expected on macOS. You must use a virtual environment:
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Dependencies not found?

  • Ensure virtual environment is activated before installing
  • Verify FastMCP installation: pip list | grep fastmcp
  • Recreate virtual environment if needed: rm -rf venv && python3 -m venv venv

Server Connection Issues

Server not showing up in Claude Code?

  • Verify virtual environment Python path in configuration
  • Check that absolute paths are used for both command and args
  • Ensure virtual environment exists: ls -la venv/bin/python3
  • Test server manually: ./venv/bin/python3 main.py
  • Restart Claude Code after configuration changes

ModuleNotFoundError: No module named 'fastmcp'?

  • MCP server is using system Python instead of virtual environment
  • Update configuration to use /path/to/project/venv/bin/python3
  • Ensure dependencies were installed in the virtual environment

Task Execution Issues

Task stuck in "running" status?

  • Wait a moment, large tasks take time
  • Check task directory: ls -la /tmp/cc_process_tasks/
  • View logs: tail -f /tmp/cc_process_mcp.log
  • Verify Claude Code CLI is accessible: which claude

Processes not cleaning up properly?

  • Use cleanup_task tool for manual cleanup
  • Check system processes: ps aux | grep claude
  • Restart server to force cleanup of all resources

Permission Issues

Permission denied errors?

  • Ensure virtual environment has proper permissions: chmod +x venv/bin/python3
  • Check that main.py is executable: chmod +x main.py
  • Verify write permissions to /tmp/ directory

System Requirements

  • Python 3.6+ with virtual environment support
  • Claude Code CLI installed and accessible via PATH
  • Unix/Linux/macOS (supports signal handling)
  • Virtual Environment (required on modern macOS due to PEP 668)
  • Write permissions to /tmp/ directory for task storage

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选