
Claude Context Local
Provides semantic code search capabilities that run 100% locally using EmbeddingGemma embeddings. Enables finding code by meaning across 15 file extensions and 9+ programming languages without API costs or sending code to the cloud.
README
██████╗ ██╗ █████╗ ██╗ ██╗ ██████╗ ███████╗
██╔════╝ ██║ ██╔══██╗ ██║ ██║ ██╔══██╗ ██╔════╝
██║ ██║ ███████║ ██║ ██║ ██║ ██║ █████╗
██║ ██║ ██╔══██║ ██║ ██║ ██║ ██║ ██╔══╝
╚██████╗ ███████╗ ██║ ██║ ╚██████╔╝ ██████╔╝ ███████╗
╚═════╝ ╚══════╝ ╚═╝ ╚═╝ ╚═════╝ ╚═════╝ ╚══════╝
██████╗ ██████╗ ███╗ ██╗ ████████╗ ███████╗ ██╗ ██╗ ████████╗
██╔════╝ ██╔═══██╗ ████╗ ██║ ╚══██╔══╝ ██╔════╝ ╚██╗██╔╝ ╚══██╔══╝
██║ ██║ ██║ ██╔██╗ ██║ ██║ █████╗ ╚███╔╝ ██║
██║ ██║ ██║ ██║╚██╗██║ ██║ ██╔══╝ ██╔██╗ ██║
╚██████╗ ╚██████╔╝ ██║ ╚████║ ██║ ███████╗ ██╔╝ ██╗ ██║
╚═════╝ ╚═════╝ ╚═╝ ╚═══╝ ╚═╝ ╚══════╝ ╚═╝ ╚═╝ ╚═╝
██╗ ██████╗ ██████╗ █████╗ ██╗
██║ ██╔═══██╗ ██╔════╝ ██╔══██╗ ██║
██║ ██║ ██║ ██║ ███████║ ██║
██║ ██║ ██║ ██║ ██╔══██║ ██║
███████╗ ╚██████╔╝ ╚██████╗ ██║ ██║ ███████╗
╚══════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚══════╝
Claude Context without the cloud. Semantic code search that runs 100% locally using EmbeddingGemma. No API keys, no costs, your code never leaves your machine.
- 🔍 Find code by meaning, not strings
- 🔒 100% local - completely private
- 💰 Zero API costs - forever free
- ⚡ Fewer tokens in Claude Code and fast local searches
An intelligent code search system that uses Google's EmbeddingGemma model and advanced multi-language chunking to provide semantic search capabilities across 15 file extensions and 9+ programming languages, integrated with Claude Code via MCP (Model Context Protocol).
🚧 Beta Release
- Core functionality working
- Installation tested on Mac/Linux
- Benchmarks coming soon
- Please report issues!
Demo
<img src="https://github.com/FarhanAliRaza/claude-context-local/releases/download/v0.1/example.gif" alt="Demo of local semantic code search" width="900" />
Features
- Multi-language support: 9+ programming languages with 15 file extensions
- Intelligent chunking: AST-based (Python) + tree-sitter (JS/TS/Go/Java/Rust/C/C++/C#)
- Semantic search: Natural language queries to find code across all languages
- Rich metadata: File paths, folder structure, semantic tags, language-specific info
- MCP integration: Direct integration with Claude Code
- Local processing: All embeddings stored locally, no API calls
- Fast search: FAISS for efficient similarity search
Why this
Claude’s code context is powerful, but sending your code to the cloud costs tokens and raises privacy concerns. This project keeps semantic code search entirely on your machine. It integrates with Claude Code via MCP, so you keep the same workflow—just faster, cheaper, and private.
Requirements
- Python 3.12+
- Disk: 1–2 GB free (model + caches + index)
- Optional: NVIDIA GPU (CUDA 11/12) for FAISS acceleration; Apple Silicon (MPS) for embedding acceleration. These also speed up running the embedding model with SentenceTransformer, but everything still works on CPU.
Install & Update
Install (one‑liner)
curl -fsSL https://raw.githubusercontent.com/FarhanAliRaza/claude-context-local/main/scripts/install.sh | bash
If your system doesn't have curl
, you can use wget
:
wget -qO- https://raw.githubusercontent.com/FarhanAliRaza/claude-context-local/main/scripts/install.sh | bash
Update existing installation
Run the same install command to update:
curl -fsSL https://raw.githubusercontent.com/FarhanAliRaza/claude-context-local/main/scripts/install.sh | bash
The installer will:
- Detect your existing installation
- Preserve your embeddings and indexed projects in
~/.claude_code_search
- Stash any local changes automatically (if running via curl)
- Update the code and dependencies
What the installer does
- Installs
uv
if missing and creates a project venv - Clones/updates
claude-context-local
in~/.local/share/claude-context-local
- Installs Python dependencies with
uv sync
- Downloads the EmbeddingGemma model (~1.2–1.3 GB) if not already cached
- Tries to install
faiss-gpu
if an NVIDIA GPU is detected (interactive mode only) - Preserves all your indexed projects and embeddings across updates
Quick Start
1) Register the MCP server (stdio)
claude mcp add code-search --scope user -- uv run --directory ~/.local/share/claude-context-local python mcp_server/server.py
Then open Claude Code; the server will run in stdio mode inside the uv
environment.
2) Index your codebase
Open Claude Code and say: index this codebase. No manual commands needed.
3) Use in Claude Code
Interact via chat inside Claude Code; no function calls or commands are required.
Architecture
claude-context-local/
├── chunking/ # Multi-language chunking (15 extensions)
│ ├── multi_language_chunker.py # Unified orchestrator (Python AST + tree-sitter)
│ ├── python_ast_chunker.py # Python-specific chunking (rich metadata)
│ └── tree_sitter.py # Tree-sitter: JS/TS/JSX/TSX/Svelte/Go/Java/Rust/C/C++/C#
├── embeddings/
│ └── embedder.py # EmbeddingGemma; device=auto (CUDA→MPS→CPU); offline cache
├── search/
│ ├── indexer.py # FAISS index (CPU by default; GPU when available)
│ ├── searcher.py # Intelligent ranking & filters
│ └── incremental_indexer.py # Merkle-driven incremental indexing
├── merkle/
│ ├── merkle_dag.py # Content-hash DAG of the workspace
│ ├── change_detector.py # Diffs snapshots to find changed files
│ └── snapshot_manager.py # Snapshot persistence & stats
├── mcp_server/
│ └── server.py # MCP tools for Claude Code (stdio/HTTP)
└── scripts/
├── install.sh # One-liner remote installer (uv + model + faiss)
├── download_model_standalone.py # Pre-fetch embedding model
└── index_codebase.py # Standalone indexing utility
Data flow
graph TD
A["Claude Code (MCP client)"] -->|index_directory| B["MCP Server"]
B --> C{IncrementalIndexer}
C --> D["ChangeDetector<br/>(Merkle DAG)"]
C --> E["MultiLanguageChunker"]
E --> F["Code Chunks"]
C --> G["CodeEmbedder<br/>(EmbeddingGemma)"]
G --> H["Embeddings"]
C --> I["CodeIndexManager<br/>(FAISS CPU/GPU)"]
H --> I
D --> J["SnapshotManager"]
C --> J
B -->|search_code| K["Searcher"]
K --> I
Intelligent Chunking
The system uses advanced parsing to create semantically meaningful chunks across all supported languages:
Chunking Strategies
- Python: AST-based parsing for rich metadata extraction
- All other languages: Tree-sitter parsing with language-specific node type recognition
Chunk Types Extracted
- Functions/Methods: Complete with signatures, docstrings, decorators
- Classes/Structs: Full definitions with member functions as separate chunks
- Interfaces/Traits: Type definitions and contracts
- Enums/Constants: Value definitions and module-level declarations
- Namespaces/Modules: Organizational structures
- Templates/Generics: Parameterized type definitions
Rich Metadata for All Languages
- File path and folder structure
- Function/class/type names and relationships
- Language-specific features (async, generics, modifiers, etc.)
- Parent-child relationships (methods within classes)
- Line numbers for precise code location
- Semantic tags (component, export, async, etc.)
Configuration
Environment Variables
CODE_SEARCH_STORAGE
: Custom storage directory (default:~/.claude_code_search
)
Model Configuration
The system uses google/embeddinggemma-300m
by default.
Notes:
- Download size: ~1.2–2 GB on disk depending on variant and caches
- Device selection: auto (CUDA on NVIDIA, MPS on Apple Silicon, else CPU)
- You can pre-download via installer or at first use
- FAISS backend: CPU by default. If an NVIDIA GPU is detected, the installer
attempts to install
faiss-gpu-cu12
(orfaiss-gpu-cu11
) and the index will run on GPU automatically at runtime while saving as CPU for portability.
Hugging Face authentication (if prompted)
The google/embeddinggemma-300m
model is hosted on Hugging Face and may require
accepting terms and/or authentication to download.
-
Visit the model page and accept any terms:
- https://huggingface.co/google/embeddinggemma-300m
-
Authenticate one of the following ways:
-
CLI (recommended):
uv run huggingface-cli login # Paste your token from https://huggingface.co/settings/tokens
-
Environment variable:
export HUGGING_FACE_HUB_TOKEN=hf_XXXXXXXXXXXXXXXXXXXXXXXX
-
After the first successful download, we cache the model under ~/.claude_code_search/models
and prefer offline loads for speed and reliability.
Supported Languages & Extensions
Fully Supported (15 extensions across 9+ languages):
Language | Extensions |
---|---|
Python | .py |
JavaScript | .js , .jsx |
TypeScript | .ts , .tsx |
Java | .java |
Go | .go |
Rust | .rs |
C | .c |
C++ | .cpp , .cc , .cxx , .c++ |
C# | .cs |
Svelte | .svelte |
Total: 15 file extensions across 9+ programming languages
Storage
Data is stored in the configured storage directory:
~/.claude_code_search/
├── models/ # Downloaded models
├── index/ # FAISS indices and metadata
│ ├── code.index # Vector index
│ ├── metadata.db # Chunk metadata (SQLite)
│ └── stats.json # Index statistics
Performance
- Model size: ~1.2GB (EmbeddingGemma-300m and caches)
- Embedding dimension: 768 (can be reduced for speed)
- Index types: Flat (exact) or IVF (approximate) based on dataset size
- Batch processing: Configurable batch sizes for embedding generation
Tips:
- First index on a large repo will take time (model load + chunk + embed). Subsequent runs are incremental.
- With GPU FAISS, searches on large indexes are significantly faster.
- Embeddings automatically use CUDA (NVIDIA) or MPS (Apple) if available.
Troubleshooting
Common Issues
- Import errors: Ensure all dependencies are installed with
uv sync
- Model download fails: Check internet connection and disk space
- Memory issues: Reduce batch size in indexing script
- No search results: Verify the codebase was indexed successfully
- FAISS GPU not used: Ensure
nvidia-smi
is available and CUDA drivers are installed; re-run installer to pickfaiss-gpu-cu12
/cu11
. - Force offline: We auto-detect a local cache and prefer offline loads; you can also set
HF_HUB_OFFLINE=1
.
Ignored directories (for speed and noise reduction)
node_modules
, .venv
, venv
, env
, .env
, .direnv
, __pycache__
, .pytest_cache
, .mypy_cache
, .ruff_cache
, .pytype
, .ipynb_checkpoints
, build
, dist
, out
, public
, .next
, .nuxt
, .svelte-kit
, .angular
, .astro
, .vite
, .cache
, .parcel-cache
, .turbo
, coverage
, .coverage
, .nyc_output
, .gradle
, .idea
, .vscode
, .docusaurus
, .vercel
, .serverless
, .terraform
, .mvn
, .tox
, target
, bin
, obj
Contributing
This is a research project focused on intelligent code chunking and search. Feel free to experiment with:
- Different chunking strategies
- Alternative embedding models
- Enhanced metadata extraction
- Performance optimizations
License
Licensed under the GNU General Public License v3.0 (GPL-3.0). See the LICENSE
file for details.
Inspiration
This project draws inspiration from zilliztech/claude-context. I adapted the concepts to a Python implementation with fully local embeddings.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。