Claude-Modeling-Labs MCP Server

Claude-Modeling-Labs MCP Server

A comprehensive toolkit that enables automated interaction with Cisco Modeling Labs (CML) for creating network topologies, configuring devices, and managing lab environments.

Category
访问服务器

README

Claude-Modeling-Labs MCP Server

A comprehensive, modular toolkit for interacting with Cisco Modeling Labs (CML) through the Model Context Protocol (MCP) interface. This server enables automated lab creation, topology management, device configuration, and network testing for educational and development purposes.

Features

Core Capabilities

  • Lab Management: Create, start, stop, and delete CML labs
  • Topology Building: Add routers, switches, and create network links
  • Device Configuration: Apply and retrieve device configurations
  • Console Access: Execute commands on network devices
  • Network Discovery: Inspect lab topologies, nodes, and interfaces

Key Benefits

  • Modular Architecture: Clean separation of concerns across handlers
  • Educational Focus: Perfect for networking students and instructors
  • Automation Ready: Designed for agentic AI tutoring systems
  • Windows Compatible: Modular design resolves previous Windows compatibility issues

Installation

Prerequisites

  • Python 3.8 or higher
  • Access to a Cisco Modeling Labs server
  • Valid CML credentials

Quick Start

  1. Clone or download this repository
  2. Install dependencies:
    pip install -r requirements.txt
    
  3. Run the MCP server:
    python claude_modeling_labs_modular.py
    

Development Installation

pip install -e .[dev]

Usage

Initialize Connection

# First, initialize the client with your CML server details
initialize_client(
    base_url="https://your-cml-server.com",
    username="your-username", 
    password="your-password",
    verify_ssl=True  # Set to False for self-signed certificates
)

Basic Lab Operations

# Create a new lab
lab = create_lab("My Network Lab", "Learning OSPF routing")

# Create network devices  
router1 = create_router(lab["lab_id"], "R1", x=100, y=100)
router2 = create_router(lab["lab_id"], "R2", x=300, y=100) 
switch1 = create_switch(lab["lab_id"], "SW1", x=200, y=200)

# Connect devices
link_nodes(lab["lab_id"], router1["node_id"], router2["node_id"])
link_nodes(lab["lab_id"], router1["node_id"], switch1["node_id"])

# Start the lab
start_lab(lab["lab_id"])
wait_for_lab_nodes(lab["lab_id"], timeout=120)

Device Configuration

# Apply configuration to a router
ospf_config = """
hostname Router1
interface GigabitEthernet0/0
 ip address 10.1.1.1 255.255.255.0
 no shutdown
router ospf 1
 network 10.1.1.0 0.0.0.255 area 0
"""
configure_node(lab["lab_id"], router1["node_id"], ospf_config)

# Retrieve current configuration
current_config = get_node_config(lab["lab_id"], router1["node_id"])

Console Commands

# Execute commands on devices
send_console_command(lab["lab_id"], router1["node_id"], "show ip route")
check_interfaces(lab["lab_id"], router1["node_id"])

# Send multiple commands
commands = [
    "show version",
    "show ip interface brief", 
    "show running-config"
]
send_multiple_commands(lab["lab_id"], router1["node_id"], commands)

Architecture

The modular design separates functionality into focused handlers:

src/
├── client/           # CML API authentication and HTTP client
├── handlers/         # Modular tool handlers
│   ├── lab_management.py    # Lab CRUD operations
│   ├── topology.py          # Node and link management  
│   ├── configuration.py     # Device configuration
│   └── console.py           # Console session management
├── utils/            # Common utilities and helpers
└── server.py         # Main MCP server entry point

Key Design Principles

  • Separation of Concerns: Each handler focuses on one aspect of CML management
  • Clean Dependencies: Minimal coupling between modules
  • Error Handling: Consistent error handling across all operations
  • Windows Compatibility: Modular structure avoids file size limitations

Available Tools

Lab Management

  • initialize_client() - Authenticate with CML server
  • list_labs() - List all available labs
  • create_lab() - Create a new lab
  • get_lab_details() - Get detailed lab information
  • delete_lab() - Delete a lab
  • start_lab() - Start lab execution
  • stop_lab() - Stop lab execution
  • wait_for_lab_nodes() - Wait for nodes to initialize
  • list_node_definitions() - List available device types

Topology Management

  • get_lab_nodes() - List nodes in a lab
  • add_node() - Add a device to a lab
  • create_router() - Create a router (iosv)
  • create_switch() - Create a switch (iosvl2)
  • get_node_interfaces() - List node interfaces
  • get_physical_interfaces() - Get physical interfaces only
  • create_interface() - Create new interface on a node
  • get_lab_links() - List all links in a lab
  • create_link_v3() - Create link between specific interfaces
  • link_nodes() - Automatically link two nodes
  • delete_link() - Remove a link
  • get_lab_topology() - Get complete topology summary

Configuration Management

  • configure_node() - Apply configuration to a device
  • get_node_config() - Retrieve device configuration

Console Operations

  • open_console_session() - Open console access to device
  • close_console_session() - Close console session
  • send_console_command() - Execute single command
  • send_multiple_commands() - Execute multiple commands
  • check_interfaces() - Check interface status
  • get_diagnostic_recommendations() - Get troubleshooting suggestions

Educational Use Cases

This toolkit is designed to support networking education through:

Automated Lab Creation

  • Dynamic topology generation based on learning objectives
  • Pre-configured scenarios for specific networking concepts
  • Rapid iteration and experimentation

AI-Powered Tutoring

  • Agentic systems can create custom labs for individual students
  • Real-time guidance and troubleshooting assistance
  • Adaptive learning paths based on student progress

Curriculum Integration

  • Support for various networking topics (OSPF, BGP, VLAN, STP, etc.)
  • Scalable from basic connectivity to complex enterprise scenarios
  • Integration with existing learning management systems

Contributing

This project follows a modular architecture to support easy extension and maintenance:

  1. Adding New Tools: Create new functions in the appropriate handler module
  2. New Handler Categories: Add new handler files and register them in server.py
  3. Testing: Each module can be tested independently
  4. Documentation: Update both code comments and this README

License

MIT License - see LICENSE file for details.

Support

For issues, questions, or contributions, please refer to the project repository or documentation.


Version: 2.0.0
Authors: Claude AI Assistant
Purpose: Educational networking automation and AI-powered tutoring

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选